Pediatric TB Intensive
Houston, Texas
October 14, 2013

Radiologic Presentation of Childhood TB
Susan D. John, MD, FACR
October 14, 2013

Disclosures

- I have no disclosures or conflicts of interest to report
Imaging TB

- Clinical diagnostic features are often non-specific
- Culture of organism is slow and often ineffective
- Imaging may provide important and relatively specific clues

Learning Objectives

- Recognize the characteristic imaging findings of tuberculosis in infants and children.
- Differentiate TB from other conditions with similar imaging findings.
- Use advanced imaging to solve special diagnostic problems.
Primary Tuberculosis

- Any system can be involved
 - Thoracic
 - Central nervous system
 - Abdominal
 - Musculoskeletal
- Multimodality imaging

Common Imaging Modalities

- Radiographs
 - Universally available
 - Insensitive
- US
 - Pleural disease
 - Lymphadenopathy
 - Abdominal findings
Common Imaging Modalities

- **CT**
 - More sensitive for chest, abdomen disease
 - Higher radiation exposure
 - Requires IV, GI contrast
- **MRI**
 - Important for CNS disease
 - No ionizing radiation
 - Requires sedation
 - Not universally available

Thoracic Primary Tuberculosis

- Imaging findings reflect progression of infection
 - Ghon focus
 - Drainage to regional lymph nodes
 - Intrabronchial spread
 - Penetration of adjacent spaces
 - Hematogenous dissemination
Primary Pulmonary TB

- Radiograph
 - Ghon focus
 - Variable in size
 - Often transient, hidden
 - Mild pleural reaction
 - May progress locally or lead to intrabronchial spread

Ghon Focus
Pulmonary TB in Children

- Adult-type disease
 - Less common
 - Opacity in apical lung segments
 - Apical and posterior – Upper
 - Apical – Lower
 - May lead to cavities and fibrosis
Pneumatoceles
Disseminated Pulmonary TB

• “Miliary”
 – Hard to see in early stage
 – Typical - <2mm size
 – Larger nodules or ill-defined patches can occur in children
 – Bilateral, evenly distributed
Miliary Nodules - CT
Teen with GI malignancy, TB

Tree-in-bud pattern
Congenital TB

• Rare form of transmission
• Chest radiograph may resemble other types of neonatal pneumonia
• Lymphadenopathy key to the diagnosis
Lymphadenopathy

• Hallmark of primary TB
 – Only radiologic finding in 50%
 – More common < 5 yrs of age

• Radiographs
 – Difficult to see with confidence
 – PA and lateral views needed
 – Hilar, paratracheal most common
Normal

Lymphadenopathy
Lymphadenopathy

- CT improves visualization
 - Up to 60% with normal CXR have LNs on CT
 - (Delacourt, 1993, Arch Dis Child 69:430.)
- CT technique
 - Use IV contrast
 - Multidetector improves resolution

Lymphadenopathy

- Sites on CT
 - Subcarinal (90%)
 - Hilar (Bilateral 72%)
 - Anterior mediastinum
 - Precarinal
 - Right paratracheal
 - Multiple sites (96%)
Lymphadenopathy in PTB

- **Size criteria**
 - Generally use 1 cm or greater
 - Not well-established

- **Appearance**
 - Low-density center with enhancing rim
 - Interrupted peripheral enhancement
 - Calcification uncommon
Miliary TB with Calcified Lymphadenopathy and Granulomata

Previous Pulmonary TB

- Calcifications (15-20% on CT)
 - Occurs in areas of caseation
 - 6 mons – 4 yrs after infection
 - Not seen in young infants
 - Occurs earlier in young children
- Other rare findings
 - Bulla
 - Bronchiectasis
TB with calcified lymph nodes
Thymus is normally prominent in infants and should not be mistaken for mediastinal disease.
Lymphadenopathy on CT—How Good Are We?

 - Only moderate agreement between 4 radiologists
 - Rt hilar, subcarinal best
 - Lt hilar, anterior mediastinal worst
 - Thymus causes confusion
- Fletcher, J Clin Oncol (1999) 17:2153
 - Hodgkins disease—experts don’t agree
Lymphadenopathy in PTB-Complications

• Airway compromise
 – Extrinsic compression
 • Obstructive emphysema
 • Atelectasis
 • Left > Right
 – Bronchial wall granulomas
 – Intrabronchial caseous material
Atelectasis
Bronchial Compression/Endobronchial Granuloma

Penetration of Adjacent Spaces

• Pleural effusion
 – Unilateral = direct spread
 – Bilateral = hematogenous
 – Transudate most common
 • Hypersensitivity response
 – Size variable

• Pericardial effusion
 – Subcarinal lymph nodes
Patchy or Nodular
Pleural Effusion

Small Pleural Effusion with Decubitus View
CNS TB in Children

- Hematogenous most common
 - Spread from calvarium, middle ear
- Manifestations
 - Focal disease
 - Meningitis
 - Infarction
 - Hydrocephalus

TB Localized CNS Disease

- Tuberculoma most common
 - Abscess uncommon
- CT (use IV contrast)
 - Enhancement patterns
- Usually < 2 cm diameter
- Rarely calcify
TB Meningitis

- Diffuse most common
- CT
 - Non-contrast – 50% show increased density in basal cisterns
 - Contrast – prominent basal enhancement (double line sign)
- MRI – similar findings
TB Meningitis with Communicating Hydrocephalus

Post-meningitis Infarcts
Abdominal TB in Children

- Less common than in adults
- Findings
 - Lymphadenopathy
 - Solid organ lesions
 - Ascites
 - Bowel wall involvement
 - Inflammatory mass
 - Omental thickening

Abdominal TB

- Lymphadenopathy
 - Para-aortic, mesenteric, periportal most common
 - Commonly calcifies
- Solid organs
 - Calcified or low density lesions
 - Granulomas, abscess
12 year old with night sweats, 20 lb wt loss, and back pain
Solid Organ Disease

- Microabscess or granuloma
- Liver, spleen
- High frequency ultrasound most sensitive

Abdominal TB

- Ascites
 - May be high density on CT (HU 20-45)
 - US useful but non-specific
- Ileocecal region
 - Bowel wall thickening
 - Inflammatory phlegmon
TB Peritonitis
Skeletal TB in Children

• Uncommon (1-2% of all cases)
• Hematogenous origin
 – Primary site often unknown
• Granuloma >> caseating focus >> trabecular destruction >> cortical destruction >> periosteal, soft tissue involvement

TB of Spine

• Common site
 – Deposited in anterior aspect of vertebral body
 – Spread to disc, subligamentous, soft tissues
 – Posterior elements seldom involved
 – Multiple contiguous vertebrae (85%)
TB of Spine

- Not seen early radiographically
- MRI valuable
 - T1 – low signal
 - T2 – heterogeneous high signal
- CT
 - Cortical bone sclerosis, destruction

TB Spondylitis
Spinal Soft Tissue Extension

- Paravertebral, epidural mass common
 - May lead to cord compression
- Subligamentous spread
- Cervical – retropharyngeal mass
- Extension along iliopsoas
 - Buttocks, groin, chest

TB Arthritis

- 2nd most common site in children
- Monoarticular
 - Hips, knees most common
- Metaphyseal infection
 - May cross physis to epiphysis
TB Arthritis

• Imaging findings
 – Joint effusion
 – Periarticular demineralization
 – Cortical irregularity
 – Osteolytic lesions
 – Periosteal new bone

• Late findings
 – Narrowed joint, overgrown epiphyses
 – Ankylosis

Joint Ultrasound

Normal
Joint effusion
TB Osteomyelitis in Children

• Uncommon – only 11% of skeletal cases
• Solitary lesions most common
• Chest radiograph often normal
• Common sites
 – Skull
 – Hands, feet
 – Ribs

TB Osteomyelitis - Patterns

• Cystic
 – Most common
 – Well-defined lytic lesion
 – Mild sclerosis, expansion
• Infiltrative
 – “Moth-eaten”, ill-defined
 – Nonspecific (Ewings, fungal, chronic pyogenic osteomyelits)
• Spina ventosa (dactylitis)
TB of Femur
TB of the Sternum

Calvarial TB

- 1% of all skeletal tuberculosis
- 75% of patients are <20 yrs age
- Parietal bone most common site
- > 80% have bone destruction
 - Frequently visible on radiographs
 - Discrete lytic circumscribed lesion
- 92% have subgaleal swelling
Calvarial TB

Conclusion

- Primary TB in children has variable and often non-specific appearances on imaging
- Lymphadenopathy remains a key finding
- Use advanced imaging when radiographs are suggestive or confusing