Substance Abuse and Tuberculosis
Oklahoma City, Oklahoma
November 17, 2010

Drug Interactions
Lisa Armitige, MD, PhD
November 17, 2010

Drug Interactions
Lisa Y. Armitige, M.D., Ph.D.
Medical Consultant
Heartland National TB Center

Associate Professor
Medicine/Pediatrics
University of Texas Health Center, Tyler
Latent TB Infection

- Tuberculin skin test (TST) or Interferon Gamma Release Assay (IGRA) positive
- No signs/symptoms or physical findings suggestive of TB
- A normal or stable CXR
- Negative sputum smears and cultures
- **NOT INFECTIONOUS**
- Dormant TB bacilli place person at risk for development of TB disease
Pathogenesis of TB
Progression to Disease

Exposure (LTBI)
- 5% First Year
- 2-3% Second Year
- ~0.1% per year thereafter

Disease

No Disease (90%)

Who Should be Tested for LTBI?

- Contacts of persons with active TB
- HIV positive individuals
- Persons with medical risk factors that increase risk of progression to disease
- Targeted testing of high risk persons to identify those at risk of recent infection
Tuberculosis Disease

- Active infectious process involving the lungs and/or other areas of the body
- Patients are often sick unless they are identified as part of the contact investigation
- When disease involves the lungs, the person is usually infectious

Populations at High Risk for TB

- Contacts of infectious persons
- HIV-infected persons
- Foreign-born persons
- Homeless persons
- Those in congregate living situations
- Persons who inject illicit drugs
- Detainees and prisoners
ANTITUBERCULOSIS DRUGS (ATS/CDC/IDSA)

- **First-Line drugs**
 - Isoniazid
 - Rifampin
 - Rifapentine
 - Rifabutin*
 - Ethambutol
 - Pyrazinamide

*Not FDA approved for TB

- **Second-Line Drugs**
 - Cycloserine
 - Ethionamide
 - Levofoxacin*
 - Moxifloxacin*
 - PAS
 - Streptomycin
 - Amikacin/Kanamycin
 - Capreomycin
ANTITUBERCULOSIS DRUGS
(ATS/CDC/IDSA)

• First-Line drugs
 – Isoniazid
 – Rifampin
 – Rifapentine
 – Rifabutin*
 – Ethambutol
 – Pyrazinamide

*Not FDA approved for TB

• Second-Line Drugs
 – Cyloserine
 – Ethionamide
 – Levofloxacin*
 – Moxifloxacin*
 – PAS
 – Streptomycin
 – Amikacin/Kanamycin
 – Capreomycin

Regimens for Treating LTBI

• 9-month regimen of isoniazid (INH) is the preferred regimen

• 6-month regimen of INH is less effective but may be used if unable to complete 9 months

• Rifampin (RIF) given daily for 4 months is an acceptable alternative when treatment with INH is not feasible.

• In situations where Rifampin cannot be used, rifabutin may be substituted (e.g., HIV-infected persons receiving protease inhibitors, patients receiving methadone).
Treatment of Culture-Positive Drug Susceptible Pulmonary TB

• General conclusions from the literature
 – 6 mo (26 wk) is the MINIMUM duration of RX
 – 6 mo regimens require rifampin and INH throughout and PZA for the first 2 months
 – 6 mo regimens are effective without INH if PZA given throughout
 – Intermittent regimens (2-3x/wk): DOT ONLY!
 • Drug susceptible isolate
 • Regimen contains INH and rifampin

Treatment of Patients with TB Disease

• Initiation phase of therapy
 – 8 weeks
 – INH, Rifampin and PZA +/-EMB

• Continuation phase of therapy
 – 16 weeks
 – INH and Rifampin
Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active TB
(Yee, AJRCCM 2003; 167: 1472)

- 37/430 Patients had major side-effects: 9 had a second major adverse event (46 total events)
 - Rash/drug fever 21
 - Hepatitis 12
 - Severe GI upset 11
 - Visual Toxicity 1
 - Arthralgia 1

- Associated with Female sex, age >60, Birthplace in Asia and HIV status

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/kg)</th>
<th>Rash</th>
<th>Hepatitis</th>
<th>GI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>(5.2)</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RIFAMPIN</td>
<td>(10.2)</td>
<td>9</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PZA</td>
<td>(24.2)</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>EMB</td>
<td>(16.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active TB
(Yee, AJRCCM 2003; 167: 1472)

- PZA: 1.48/100 person months of exposure
- INH: 0.49/100 person months
- Rif: 0.43/100 person months
- EMB: 0.07/100 person months

“The drug most likely responsible for the occurrence of hepatitis or rash during therapy for active TB is PZA”

Alcohol and LTBI treatment

- Isoniazid
 - Alcohol consumption appeared to more than double the rate of probable isoniazid hepatitis
 - Abnormal results were associated with alcohol use, but not with race, age, chronic hepatitis B infection, or HIV infection
 - A study in Spain found that only excessive alcohol consumption and a high baseline ALT concentration were independently associated with isoniazid hepatotoxicity

- Rifampin
 - Hong Kong Chest Service study showed none of 49 individuals, 20% of whom used alcohol and 8% of whom used injection drugs, treated with rifampin for 6 months had symptomatic liver injury
Isoniazid Drug Toxicities

- Increased toxicity when administered with INH due to increased serum levels
 - Phenytoin
 - valproic acid
 - Carbamazepine
 - disulfiram (Antabuse)
 - Serotonergic antidepressants
 - acetaminophen

Isoniazid Toxicity

- Central Nervous System Effects
 - irritability, seizures, dysphoria, inability to concentrate

- GI reactions (nausea, anorexia, abdominal pain)

- Peripheral Neurotoxicity
 - Dose Related
 - Uncommon (< 0.2%) at conventional doses
 - Increased risk with other conditions associated with neuropathy: malnutrition, diabetes, HIV, renal failure, alcohol
 - Pyridoxine 25 mg/kg (vitamin B6) recommended patients with above conditions
Alcohol and LTBI treatment

- For those with chronic alcohol consumption, or severe liver disease manifested by low albumin and coagulopathy or encephalopathy, the risks of LTBI may outweigh benefits.

- If LTBI treatment is undertaken, close monitoring is indicated.

- The decision to treat LTBI, or more likely defer, should be carefully made on a case-by-case basis, weighing the risk of progression to TB disease against the risk of INH or rifampin-related DILI.

Alcoholics with TB

Table 2: Differences in disease characteristics between North Carolina tuberculosis cases reported 1994–2006 with and without excess alcohol use

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Excess alcohol use</th>
<th>Prevalence ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No/Unknown</td>
</tr>
<tr>
<td>Site of disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary (nonextrapulmonary)</td>
<td>1227 (92.5%)</td>
<td>3366 (77.2%)</td>
</tr>
<tr>
<td>Extrapulmonary only</td>
<td>99 (7.5%)</td>
<td>964 (22.8%)</td>
</tr>
<tr>
<td>Chest radiographic findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavitary</td>
<td>452 (34.8%)</td>
<td>920 (28.2%)</td>
</tr>
<tr>
<td>Non-cavitary</td>
<td>775 (63.2%)</td>
<td>2346 (71.8%)</td>
</tr>
<tr>
<td>Sputum smear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>809 (65.9%)</td>
<td>1495 (45.8%)</td>
</tr>
<tr>
<td>Negative</td>
<td>418 (34.1%)</td>
<td>1771 (54.2%)</td>
</tr>
<tr>
<td>Sputum culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1038 (84.6%)</td>
<td>2270 (69.5%)</td>
</tr>
<tr>
<td>Negative</td>
<td>189 (15.4%)</td>
<td>996 (30.5%)</td>
</tr>
</tbody>
</table>

Chest radiographic, sputum smear, and sputum culture data are for cases with pulmonary involvement only.
Alcohol and Hepatotoxicity in the Treatment of TB Disease

Table 5 Dichotomous variables in cases and controls

<table>
<thead>
<tr>
<th></th>
<th>Cases (n = 56)</th>
<th>Controls (n = 406)</th>
<th>(\chi^2)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High alcohol intake</td>
<td>19-8%</td>
<td>4-9%</td>
<td>20-4</td>
<td>4-76 (2-25 to 10-05)*</td>
</tr>
<tr>
<td>Extensive disease</td>
<td>14-0%</td>
<td>3-5%</td>
<td>13-6</td>
<td>4-5 (1-88 to 10-93)*</td>
</tr>
<tr>
<td>Slow acetylator</td>
<td>82-9%</td>
<td>64-2%</td>
<td>5-60</td>
<td>2-72 (1-16 to 6-57)**</td>
</tr>
<tr>
<td>Jaundice in past</td>
<td>11-6%</td>
<td>10-8%</td>
<td>0-001</td>
<td>1-08 (0-49 to 2-35)</td>
</tr>
<tr>
<td>Pyrazinamide in regimen</td>
<td>62-8%</td>
<td>25-1%</td>
<td>44-78</td>
<td>5-03 (2-99 to 8-47)**</td>
</tr>
</tbody>
</table>

* p<0-001; ** p<0-01; *** p<0-1 x 10^-3.
† Yates’ corrected \(\chi^2 \).

Pande Thorax 1996;51:132-136

Rifampin Drug Interactions

- Interactions due to induction of hepatic microsomal enzymes that accelerate metabolism of multiple drugs

- Major concern is reduction in serum concentrations of common drugs (oral contraceptive pills, warfarin, etc.) to ineffective levels

- Bi-directional interactions between rifamycins and antiretroviral agents
Rifampin and Opioids

• Methadone
 – Rifampin lowers the serum concentration of methadone by 33-66%
 – Administration of rifampin to patients on methadone has led to opioid withdrawal in patients on methadone replacement therapy
 – Need to increase methadone dose and monitor carefully to prevent withdrawal with co-administration of rifampin and methadone

• Codeine
 – Administration with rifampin leads to decreased biotransformation to morphine (which is responsible for most of the analgesic effects)
 – Decreased serum concentration with rifampin

• Morphine
 – 28 % decrease in serum levels when given with rifampin
 – Loss of analgesic effect

Rifampin and Benzodiazepines

- Diazepam
 - Reduction of half-life by 76%
 - Enhanced total body clearance by 300%
 - May require a 2-3 fold increase in dose for effect

- Midazolam and Triazolam
 - Decreased serum concentration to 2-4% of controls
 - Ineffective during co-administration with rifampin

Rifampin Drug Toxicities

- Significant decrease in serum levels
 - Phenytoin
 - Valproic acid
 - Carbamazepine
 - Serotonergic antidepressants

Rifampin Drug Interactions

- It is imperative to be aware of all medications a patient is taking when that patient is placed on rifampin.
Rifabutin

- A substitute for rifampin for patients who are receiving drugs, especially antiretroviral drugs, that have unacceptable interactions with rifampin.
- Adverse effects: Less severe induction of hepatic microsomal enzymes, therefore, less effect on the metabolism of other drugs

Second-Line TB Drugs

- Cycloserine
 - Central Nervous System Effects:
 - headaches, restlessness, suicidal ideation psychosis, seizures (3% 500 mg/day),
 - May exacerbate underlying seizure disorders or mental illness.
 - Pyridoxine at 100-200 mg/day may help prevent neurotoxic side-effect.
 - Peripheral neuropathy
 - Cycloserine does not appear to be associated with hepatotoxicity, but should be used with caution in patients at risk for alcohol withdrawal seizures
Second-Line TB Drugs

• Linezolid
 – Bone marrow suppression
 – Peripheral Neuropathy
 – Optic Neuritis
 – Gastrointestinal Disturbance
 – Rash

Adverse Drug Events
Neurotoxicity

• Peripheral neuropathy
 – Drugs: INH, EMB, (ethionamide, cycloserine)
 – More common in patients with
 • Diabetes
 • Alcoholism
 • HIV infection
 • Hypothyroidism
 • Pregnancy
 • Inadequate dietary intake of pyridoxine (Vitamin B6)
 – Usually symmetrical
 – Initial symptoms: tingling, prickling, burning in balls of feet/tips of toes
 • May progress to sensory loss, loss of reflexes, unsteady gait
 • May also involve hands and fingers
Thanks!!

Questions?

1-800-TEX-LUNG