The Medical Evaluation for Diagnosing Tuberculosis
John W. Wilson, MD
September 24, 2008

The Medical Evaluation for Diagnosing Tuberculosis
2008

John W. Wilson, MD
Division of Infectious Diseases
Mayo Clinic, Rochester
Objectives

- Ruling out LTBI
- Signs and symptoms
- Medical history
- Physical examination
- TST result
- Chest radiograph
- Decision to treat based on clinical signs and symptoms
- Culture negative TB

Details covered in other lectures during course

Goal of this discussion:
- Outline a *Medical Management Approach* to the evaluation of LTBI and active Tuberculosis

Variety of Patient Referrals for TB/LTBI Evaluations – Examples:

- Asymptomatic patient with reactive TST or (+) serum QFN
- Abnormal CXR in patient living in / from high TB endemic area
- Chronic adverse respiratory symptoms
- Unilateral cervical adenopathy
- Necrotizing granulomatous inflammation on tissue histology
- Combination of above
Standard Components of TB/TLBI Evaluation

- **Patient History**
 - Symptoms
 - PMHx, comorbidities
 - FHx and patient demographics

- **Physical examination**

- **Radiologic evaluation**
 - CXR, CT

- **Laboratory testing**
 - TST, QFN
 - If available: CBC, LFTs, Tissue histology, cultures

A New Approach to TB Investigation: 4 Steps to Success:

Defining / characterizing:

1. The **Host**
2. The **Syndrome**
3. The **Microbiology**
4. The **Treatment**
Defining the Host

- **Immunocompetent vs. Immunosuppressed**
 - Immunosuppression:
 - Higher rates of primary TB disease
 - More atypical pulmonary findings
 - Increase rates of extrapulmonary disease
 - Higher rates of dissemination

- **Other medical comorbidities**: Silicosis

- **Living status**: community vs. nursing home, hospital, jail, shelter etc.
 - Other cases of TB reported, pattern of spread?
Examples of Immunosuppression

- **HIV infection / AIDS
- Tumor necrosis factor (TNF-α) inhibitors
 - Rheumatoid arthritis, inflammatory bowel disease
- Many types of lymphomas and other hematologic malignancies
- Bone marrow and solid organ transplantation
- Long term / higher dose steroid usage
- Select congenital immunodeficiencies and other CMI suppressant causes

Presentation of TB can be different in Immunosuppressed Pts

TB in an immunosuppressed patient
- Can be more of a “Systemic” illness
- More extrapulmonary involvement - up to 60% cases in HIV (+) pts:
- More atypical presentations:
 - Diarrhea
 - Hepatosplenomegaly
 - Lymphadenopathy
Pulmonary TB with immunosuppression

- CXR findings - advanced HIV/AIDS (↑ variable):
 - Confluent pneumonia
 - Lower zone infiltrates
 - Hilar / paratracheal adenopathy
 - Pleural shadows
 - Miliary shadowing

- **“Primary Complex pattern”** of TB common with AIDS
 - Hilar adenopathy
 - Lower / mid lung infiltrates, unilateral
 - Pleural effusions

Tuberculin skin testing & HIV infection

- Reactivity of TST decreases as CD4 count decreases:
 - 15-25% false-neg. (-) in normal host with pulmonary TB (disease)
 - 50-90% false-neg. (-) in pts. with early HIV (no other OI’s)
 - 80-100% false-neg. (-) in pts. with advanced HIV

- Consider preventative INH therapy for HIV & immunosup. pts regardless of PPD for:
 - Close contacts to “infectious” cases
Other Comorbidities

• Higher rates of LTBI progression and TB treatment failure with Diabetes
 - CID 2007;45:428-35
 - Recommendation for DB screening in LTBI and TB

• Silica dust exposure and pulmonary silicosis associated with increased risk of TB development
 - Int. Jour. of Tub. & Lung Dis. 11(5):474-84, 2007 May

Clinical Presentations of Pediatric TB is NOT the same as with Adult TB

Distinction between TB infection and disease more clear in adult than in children / infants

• Adult: disease usually follows reactivation of previously dormant organisms and almost always have
 • significant symptoms and CXR abnormalities.

• Infants & children: disease more often complicates initial infection
 • LTBI & active disease are less distinct on presentation
 • CXR findings can be subtle and symptoms are lacking in up to 50% children.

Children with pulmonary TB are rarely (if ever) contagious

• Relatively sparse load of MTB bacilli in typical intrathoracic lesion
• Cavities are rare
Pediatric Tuberculosis

In U.S., up to 50% children with pulmonary TB disease have few or No symptoms

- Young infants are more likely than older children to have a symptomatic presentation.
- Asymptomatic presentation more common among school-age children (80-90%) than among infants <1yo (40-50%)
- Note – Erythema nodosum may be present

Must search for index case – will help to:
1. Confirm the child’s diagnosis of MTB
2. Establish drug susceptibility pattern

2nd - Define the Syndrome the “-itis”
Define the Syndrome – the “itis”

- Pneumonitis – clinical sx’s or via CXR?
- Lymphadenitis, meningitis / cerebritis, pericarditis, hepatitis, peritonitis, pyelonephritis, etc.

Is the syndrome consistent with TB?
Is this new vs. recurrent TB?
Is drug-resistant TB possible? Prev trx?

Treatment approaches based the syndrome – not all the same

Considerations Depending upon the Type of Tuberculosis – “The Syndrome”

- **Infectiousness** to others – more of a concern with pulmonary disease
- Role of **Steroids** – meningeal and pericardial disease
- **Extensions** in duration of therapy – e.g. bone/joint (vertebral), CNS TB
- Presentations of **IRIS**
CXR Residuals of Primary Infection

- Apical / bi apical fibronodular shadowing ("Simon foci")
 - high risk for reactivation or postprimary type TB
- Ghon focus = isolated small fibrocalkistic lesions (usually > 1 yr.)
 - site of primary pulmonary infection
 - no increased risk of reactivation
- Ranke’s complex = dense calcified hilar LN with ipsilateral Ghon lesion (calcified)
 - no increased risk of reactivation
- Other findings: no increased risk of reactivation
 - thickening of apical pleura
 - blunting of costophrenic sulcus
Reactivation Pulmonary TB

More common presentation in immunocompetent, non HIV adults

Typical Symptoms
- **nonspecific:**
 - Dry, NP cough
 - Hemoptysis
 - Hoarseness
 - Chest pain, pleurisy
 - Dyspnea
 - Constitutional symptoms: (malaise, feverish, sweats, weight loss)

Predilection for **upper lung zones** - possible reasons:
- Impaired lymphatic clearance in lung apices
- Less macrophage activity in oxygen rich environment of apices
 - high O₂ tension decreases macrophages ability to kill bacilli

CXR of Pulmonary TB Disease - Reactivation

- **Location:** apical and/or posterior segment of RUL; apicoposterior segment of LUL or superior segment of either lower lobe
- **Infiltrate:** fibronodular, irregular with variable coalescence and cavitation
- **Cavities:** thick, moderately irregular walls
- **Volume loss:** progressive, can be rapid

Notes:
- “Atypical” lung findings in approx. 1/3 patients
- Infiltrates can appear anywhere!!
Pulmonary Tuberculosis in Children and HIV (+) Adults

- CXR more variable – hallmark findings: Hilar adenopathy and segmental pulmonary lesions
 - Hilar, mediastinal or subcarinal adenitis
 - Large adenopathy may produce airway obstruction, segmental atelectasis or consolidation

- Chronic pulmonary TB or “adult-type” TB (reactivating) is rare in children.
 - Asymptomatic and progressive primary pulmonary TB is much more common in pediatric population

Immunologic Reconstitution Syndrome (IRIS) “Paradoxical Reactions”

- Increased immune response to MTB bacilli
 - Reaction to both live and dead bacilli

- Best described in HIV (+) patients after starting HAART
 - Reactions begin median of 15 days after starting HAART
 - HAART should not be withheld in HIV pts on MTB therapy
 - Consider delay HAART 2wks - 2 months after starting MTB therapy

- IRIS may occur in HIV (-) patients
Immunologic Reconstitution Syndrome (IRIS) Presentation depends upon location of TB infection

- Most common reactions: Dependent upon location of MTB infection:
 - Fever
 - Increased adenopathy
 - Increase pulmonary infiltrates (worsening CXR), cough, CP

- IRIS becomes a “diagnosis of exclusion”
 - Must rule out TB progression (e.g. drug resistance), co-infection with another pathogen or other process (acute MI, PE, CVA, etc.)

3rd - Define the Microbiology

Either confirmed or suspected
Defining the Microbiology

Questions to consider:

1. Is it Infection vs. Non-infection-driven inflammation?
 If infection present:

2. Is the Infection mycobacterial, bacterial, fungal, viral, protozoan, helminthic?
 - AFB staining, KOH, Gram staining on sputum smear or tissue?
 - Easily done in most laboratories; rapid results

3. Is the infection caused by *M. tuberculosis* vs. NTM?
 - MTD direct probe → rapid test (more sensitive when AFB (+))

4. Drug susceptible vs. resistance (single drug, MDR, XDR-TB)
 - >1-2 weeks to determine

** Note: MTB may not be confirmed when starting therapy
Diagnostic Considerations in HIV (+) pts with MTB Disease

• Sputum smear and culture somewhat less sensitive in HIV (+) pts
 • May be 2° to decrease tendency for cavitary disease (less organism load)
 • May need to collect additional sputum samples; consider gastric and urine samples
 • Consider MTB probes on smear negative sputum samples

As CD4 cell counts decrease:

• Increased (+) yield from LN aspirates and pleural / pericardial fluid
• Increased (+) yield from mycobacterial blood cultures
• Histology - Less well-formed granulomas
4th - Define the Treatment

Defining the Treatment

- Select combination therapy for “induction phase”
 - Based on suspected or confirmed drug susceptibilities
- Selection of drugs for Re-treatment of TB (relapse or reinfection)
- Re-selection of drug(s) during therapy in setting of drug intolerance or toxicity
- Approach to Culture-Negative TB
Patients at Increased Risk for Drug Resistant MTB Infection

- Prior history of treatment with MTB medications
- Contacts of a person with documented drug-resistant MTB
- Foreign-born persons from areas where prevalence of drug-resistant MTB is high
- Residents of areas in U.S. where prevalence of INH-resistant MTB is $\geq 4\%$
- Persons whose smears or cultures remain positive after 2 months of MTB therapy

Culture Negative (-) TB

- 10-15% of pulmonary cases
- Re-evaluation of patient after 2 months of treatment
 - Repeat CXR (or CT chest if done)
 - Clinical status
 - Sputum cultures
- If there is any clinical OR radiographic improvement while on treatment during the first 2 months = tuberculosis clinically diagnosed and continue treatment for active disease
- 6 mo of 4 drugs OR 2 mo INH/RFP/PZA/EMB + 2 mo INH/RFP
The Medical Evaluation for Diagnosing Tuberculosis

1. The Host
2. The Syndrome
3. The Microbiology
4. The Treatment

Traditional Approach
- Patient History
- Physical examination
- Radiologic evaluation
- Laboratory testing

A New Approach – Define:
1. The Host
2. The Syndrome
3. The Microbiology
4. The Treatment
THE END
Thank you for your attention