TB in the Correctional Setting
Collinsville, Illinois
April 22, 2009

Tuberculosis, HIV, and Corrections
James B. McAuley, MD, MPH
April 22, 2009

Tuberculosis, HIV, and Corrections
James B. McAuley, MD MPH
Rush University
U.S. Correctional System

- In February 2000 the US reached a benchmark of 2 MILLION individuals in its prisons and jails. By year end 2007 – 2,318,904
- Approximately 10 million people are booked into the 3,365 US jails over the course of the year.
- In 2007 7.3 million people in jail, prison, or on parole at year end – 3.2% of US population (1 in 31 adults)
- 1 in 198 Americans were sentenced for greater than one year in 2007.

Data from Bureau of Justice Statistics

Adult Incarceration Rate US
Definitions

- Police Lock Ups
- Jails (detention)
- Prisons – Federal, State, Military, ICE

Importance of Corrections in Public Health

- Jail may be primary source of health care for detainees (public medicine)
- Population admitted to jails and prisons at high risk for many health problems (disadvantaged)
- Jail-based interventions can have high public health impact (research needed)
- Jails and prisons may serve as amplifiers of important infectious diseases (research needed)
Primary Source of Medical Care
Female Detainees CCJ - 1997

Infectious Disease Burden among Released Inmates, United States, 1996

<table>
<thead>
<tr>
<th>Infection/Disease</th>
<th>Infected US Population</th>
<th>Infected Inmates Released</th>
<th>% of Total Infected Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>229,000</td>
<td>39,000</td>
<td>17</td>
</tr>
<tr>
<td>HIV</td>
<td>750,000</td>
<td>98 –145,000</td>
<td>13-19</td>
</tr>
<tr>
<td>HBV (chronic)</td>
<td>1.0-1.25 million</td>
<td>155,000</td>
<td>12-15</td>
</tr>
<tr>
<td>HCV</td>
<td>4.5 million</td>
<td>1.3-1.4 million</td>
<td>29-32</td>
</tr>
<tr>
<td>TB</td>
<td>34,000</td>
<td>12,000</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: NCCHC, Hammel, Greifinger et al. unpublished data
Prison populations: Convergence of risk groups

- Male
- Young age groups
- High unemployment rate/low income persons
- Low education level
- High rates drug abuse and alcoholism
- High rates of HIV & STDs
- High rates of mental illness and homelessness
- Frequent close contacts and recent exposure to active TB cases
Reported TB Cases*
United States, 1982–2007

*Updated as of April 23, 2008.

"You probably came in contact with someone who has an infectious smile."
Tuberculosis in Jails & Prisons

- 1992-3 national survey:
 - TB disease - 121/100,000,
 - TB infection - 10% in jails and prisons
 - (4% US population – NHANES)
- 43 current cases among officers (2 MDR)
- Most programs had “high” compliance with CDC guidelines

Tuberculosis in Correctional Facilities, NIJ/CDC, 1994
Tuberculosis in a Tennessee Jail

- Over a 3 year period active TB was diagnosed in 38 detainees/inmates and 5 guards.
- 43% of the community TB cases had been incarcerated.
- 2700 persons in jail on a given day, 159 admitted per day, 173,000 passed through during the 3 year period.
- Limited screening (two questions, TST on day 10)

Cook County – TB/Jail registry match

- 1995-2000 (6 years) of jail detainees matched to 1996-2001 TB registry:
 - 163 active cases had passed through CCJ, but not active at the time.
TB Morbidity, CCJ and Chicago, 1992-2001
TB Exposure Episodes
Cook County Jail, 1994-2000

Episodes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
"Here it is, Arturo Constanza. Are you still at the same address?"
TB case detection: when to screen?

- **Entry screening**
 - Keep TB out—new prevalent cases
 - Identify persons already diagnosed/on therapy

- **Screening of respiratory symptomatics**
 - Identify new incident cases
 - Screening of their close contacts

- **Mass screening** in uncontrolled situations to identify all prevalent cases
 - Performed when entry/screening inadequate
 - Special outbreak situations
TB in Prisons: Summary of Studies

<table>
<thead>
<tr>
<th>Study site</th>
<th>Type</th>
<th>No. inmates</th>
<th>Time</th>
<th>Method</th>
<th>Results (per 100K)</th>
<th>Previous DX</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>Intake</td>
<td>126,608</td>
<td>1992-4</td>
<td>CXR</td>
<td>68</td>
<td>52%</td>
<td>29%</td>
</tr>
<tr>
<td>NYC-M</td>
<td>Intake</td>
<td>4172</td>
<td>1993</td>
<td>CXR</td>
<td>767</td>
<td>78%</td>
<td>29%</td>
</tr>
<tr>
<td>NYC-RJ</td>
<td>Nest- cc</td>
<td>2636</td>
<td>1985-92</td>
<td>TST</td>
<td>500</td>
<td>N/A</td>
<td>16%</td>
</tr>
<tr>
<td>Malawi</td>
<td>x-sect</td>
<td>1315</td>
<td>1996</td>
<td>Smear</td>
<td>5100</td>
<td>30%</td>
<td>73%</td>
</tr>
<tr>
<td>Iv Coast</td>
<td>Prospect</td>
<td>1861</td>
<td>1990-2</td>
<td>Smear</td>
<td>5800</td>
<td>N/A</td>
<td>30%</td>
</tr>
<tr>
<td>Georgia</td>
<td>x-sect</td>
<td>7473</td>
<td>1997-8</td>
<td>Sm/CXR</td>
<td>5995</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Prison Screening for Different At-Risk Populations

<table>
<thead>
<tr>
<th>TB (high)</th>
<th>HIV (low-mod)</th>
<th>Sputum</th>
<th>PPD</th>
<th>Clinical</th>
<th>CXR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ (Russia)</td>
<td>$</td>
<td></td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>TB (high)</td>
<td>HIV (high)</td>
<td></td>
<td></td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>$ (Africa)</td>
<td>$</td>
<td></td>
<td></td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>TB (low)</td>
<td>HIV (low)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>$ (US-rural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB (high)</td>
<td>HIV (high)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>$ (US-city)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Jails and prisons are a significant source of medical care (public medicine) and public health intervention for the most marginalized in society.
- Effective strategies to address these problems are beginning to emerge.
- Intervention in jails and prisons will likely lead to better health of the whole community.

Estimated TB incidence vs HIV prevalence

![Graph showing the relationship between estimated TB incidence and HIV prevalence](image-url)
Estimated HIV Coinfection in Persons Reported with TB, United States, 1993–2006*

*Updated as of April 23, 2008.

Note: Minimum estimates based on reported HIV-positive status among all TB cases in the age group.
The Effects of TB on HIV Progression

- TB increases HIV progression
- Dually infected persons often have very high HIV viral loads
- Immuno-suppression progresses more quickly, and survival may be shorter despite successful treatment of TB
- Persons who were co-infected have a shorter survival period than persons with HIV who never had TB disease

The Effects of Immune Suppression on TB Progression

- HIV+ person has a greater risk of reactivation of latent TB infection (LTBI)
- HIV+ person is more likely to progress to TB disease following infection
- HIV+ person has a high risk of becoming sick again after treatment
- HIV+ person with LTBI has a 5-10% annual risk of developing active TB (versus 10% lifetime risk among HIV-negative persons)

The Effects of HAART on TB Progression

- Highly Active Anti-retroviral Therapy (HAART) alone can reduce the risk of latent TB infection progression to active TB disease by as much as 80%–92%.

HIV Disease Progression on TB Treatment with and without HAART

<table>
<thead>
<tr>
<th>Years of enrollment</th>
<th>TBTC 23 ARV</th>
<th>CPCRA/ACTG No ARV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CD4 cell count</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>Use of HAART during TB treatment</td>
<td>80%</td>
<td>0</td>
</tr>
<tr>
<td>Death within 1 year of start of TB therapy</td>
<td>4.5%</td>
<td>20%</td>
</tr>
<tr>
<td>Death or new OI within 1 year of TB therapy start</td>
<td>15.7%</td>
<td>38.9%</td>
</tr>
</tbody>
</table>

Burman et al, CROI 2003, Clin Infect Dis
Clinical Presentation of HIV-related TB

- **CD4 counts >350**
 - Disease usually limited to the lungs
 - Often presents like TB in HIV-uninfected persons
 - “typical” chest X-ray findings with upper lobe infiltrates with or without cavities

- **CD4 counts <50-100**
 - Extrapulmonary disease is common
 - Disseminated disease with high fevers and rapid progression is seen
 - Chest X-ray findings often look like “primary TB” with adenopathy, effusions, interstitial or miliary
Pulmonary TB in Early and Late HIV Infection

<table>
<thead>
<tr>
<th>Features of pulmonary TB</th>
<th>Early Stage HIV infection</th>
<th>Late Stage HIV infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical picture</td>
<td>often resembles post-primary PTB</td>
<td>often resembles primary PTB</td>
</tr>
<tr>
<td>Sputum smear result</td>
<td>often positive</td>
<td>more likely to be negative</td>
</tr>
<tr>
<td>Chest X-ray appearance</td>
<td>upper lobe infiltrates with or without cavitation</td>
<td>infiltrates any lung zone, no cavitation; miliary; normal</td>
</tr>
</tbody>
</table>

Smear-negative Pulmonary TB

- TB sputum culture is the gold standard for TB diagnosis

- If sputum smears are negative:
 - Obtain sputum culture if available
 - Culture will improve the quality of care and assist the confirmation of the diagnosis
 - A CXR can help with earlier diagnosis, i.e., if findings show intrathoracic adenopathy, miliary changes, or upper lobe infiltrates
Diagnosing TB in Persons with HIV

- In HIV-positive or suspect patients:
 - 3 sputum samples for microscopy are indicated for any symptoms of TB regardless of duration or sputum characteristics
 - Fever and weight loss can be important symptoms
 - If sputum smear is +, a chest X-ray is not required to confirm the diagnosis PTB

Post - Primary Tuberculosis – “Re-activation”

- Air space consolidation
- Cavitation, cavitary nodule
- Upper lung zone distribution
- Endobronchial pattern of spread
Primary Pulmonary Tuberculosis

- **Distribution**: Slight upper lobe predominance but any lobe can be involved
- Intrathoracic adenopathy, hilar and paratracheal
- Cavitation is uncommon (<10%)
- Miliary pattern

HIV & TB: Adenitis
Understand the Differential Diagnosis of Smear-Negative PTB in HIV Patients

- Always reassess the patient for conditions that may be mistaken for PTB, including non-infectious conditions.
- Acute bacterial pneumonia is common in HIV patients (short symptom history usually differentiates pneumonia from PTB).
- Consider PCP:
 - In a seriously ill patient with dry cough, severe dyspnoea and bilateral diffuse infiltrates.
 - Concomitant treatment of TB and PCP may be lifesaving.
 - PCP almost never produces a pleural effusion.

Pattern of TB and Survival of Patients with HIV-related TB

Extra-pulmonary TB

- More strongly HIV-related than PTB
 - If combined extra-pulmonary TB (EPTB) and PTB, HIV infection is even more likely
- Patients with HIV and EPTB are at risk for disseminated disease and rapid clinical deterioration

Extra-pulmonary TB

- If a patient has EPTB, look also for PTB with sputum smears - many patients with EPTB, however, do not have coexisting PTB
- Forms of EPTB commonly seen in patients with HIV-associated TB include:
 - Lymphadenopathy
 - Pleural effusion
 - Abdominal
 - Pericardial
 - Miliary TB
 - Meningitis
Extra-pulmonary TB

- Presentation
 - Constitutional symptoms (fever, night sweats, weight loss)
 - Local features related to the site of the disease

- Diagnostic tools
 - X-rays, ultrasound, biopsy

- Diagnosis may be presumptive provided other conditions are excluded

- Note: disseminated TB may have no localizing signs, may present with anemia, or low platelets

TB Treatment

Anti-TB regimens in an HIV-positive patient follow the same principles as in HIV-negative patients
TB Treatment

- **Cautions:**
 - Extensive disease
 - Culture positive at 2 months
 - Daily during initial phase then thrice weekly or daily

TB/HIV – Starting ART

- All patients with tuberculosis and HIV infection should be evaluated to determine if antiretroviral therapy (ART) is indicated during the course of treatment for tuberculosis

- Appropriate arrangements for access to antiretroviral drugs should be made for patients who meet indications for treatment
TB/HIV – Starting ART

- Given the complexity of co-administration of antituberculosis treatment and ART, consultation with a physician who is expert in this area is recommended before initiation of concurrent treatment for TB and HIV infection, regardless of which disease appeared first.
- However, initiation of treatment for TB should not be delayed.
- Patients with TB and HIV infection should also receive cotrimoxazole as prophylaxis for other infections.

How Can Outcomes of HIV-Related TB be Improved?

- Appropriate treatment of TB
- Assure adherence with TB treatment through directly observed therapy (DOT)
- Co-trimoxazole prophylaxis/preventive therapy (CPT)
- Initiate Highly Active Anti-Retroviral Treatment (HAART)
Co-trimoxazole Preventative Therapy (CPT)

- Reduces the risk of:
 - *Pneumocystis jiroveci* pneumonia (PCP)
 - Toxoplasma
 - Bacterial infections

- Reduces deaths and hospitalizations

- Also effective against:
 - Pneumococcus, salmonella, nocardia

CPT

- **All HIV-positive TB patients** *should receive CPT* regardless of the CD4 count, for at least the duration of anti-TB treatment.

- Extend CPT beyond the end of anti-TB treatment if the CD4 cell count is less than 200 cells/mm³
Case Study

- A 29 yo incarcerated woman comes to see you because of fever and marked dyspnea. Her boyfriend had died of AIDS 2 years ago, but she has never sought evaluation.
- You order sputum times 3 for AFB and a chest X-ray
- You order an HIV test

Case Study

- The initial chest X-ray is interpreted as normal
- 3 smears are AFB negative
- Her HIV test is + and the CD4 count is 26
- She remains febrile and short of breath (SOB)

Q1: What would you do?
Case Study

- Empiric trial of PCP and CAP treatment started
- 5 days later she is much worse
- A repeat X-ray now shows diffuse reticular-nodular infiltrates throughout the lungs, with a miliary pattern

Q2: What is your next step?
Q3: How would you classify this patient and what treatment category?

Case Study

- Patient is started on a standard anti-TB treatment regimen while sputum cultures pending
- She gradually improves. She continues cotrimoxazole in preventive dosage and ART is started
- Sputum culture results are available after 4 weeks and are positive for *M. tuberculosis* complex
Lessons Learned

- Knowing HIV status allows introduction of other life-saving interventions for HIV + TB patients
- A chest X-ray is not necessary to diagnose TB if the smear is positive
- Smear negative TB is common in advanced HIV disease and the diagnosis can be difficult
- In the severely ill HIV + patient who is failing a trial of PCP and Pneumonia therapy, empiric anti-TB therapy is indicated even if AFB smear negative

Lessons Learned

- A chest X-ray can be useful in the workup of smear negative patients with HIV
- Empiric treatment for TB can be life-saving in severely ill HIV patients who do not respond to treatment for other infections
- Sputum culture will assist in confirming the diagnosis of TB and can improve care
Issues in Using HAART During TB Therapy

- Identification of patients who will benefit from antiretroviral therapy
- Drug-drug interactions
- Immune reconstitution events
- Overlapping ARV and TB medicine side effect
- Adherence with multi-drug therapy for two diseases
- Coordinating care between TB and HIV care providers

Treatment of TB for HIV-Positive Persons

- Rifampin-based regimens generally recommended for persons
 - Who have not started antiretroviral therapy
 - For whom rifampin-incompatible PIs or NNRTI-based regimens are not essential
- Initial treatment phase should consist of:
 - Isoniazid (INH)
 - Rifampin (RIF)
 - Pyrazinamide (PZA)
 - Ethambutol (EMB)
- RIF may be used with some PIs and NNRTIs
Treatment of TB for HIV-Positive Persons

- For patients receiving PIs or NNRTIs, initial treatment phase may consist of:
 - Isoniazid (INH)
 - Rifabutin (RFB)
 - Pyrazinamide (PZA)
 - Ethambutol (EMB)
- An alternative non-rifamycin regimen includes INH, EMB, PZA, and streptomycin (SM) but is not generally recommended.

Treatment of TB for HIV-Positive Persons

- The continuation phase of treatment should be:
 - Isoniazid and rifampin for 4 months
 - Isoniazid and ethambutol for 6 months can be used but is associated with higher rates of failure and relapse in HIV-positive persons.
Rifampin Decreases Blood Levels of Nevirapine and Efavirenz

<table>
<thead>
<tr>
<th>NNRTI</th>
<th>Effect of rifampin on NNRTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevirapine (NVP)</td>
<td>↓ 37-58%</td>
</tr>
<tr>
<td>Efavirenz (EFV)</td>
<td>↓ 13-26%</td>
</tr>
</tbody>
</table>

Rifampin Markedly Decreases Blood Levels of all PIs

<table>
<thead>
<tr>
<th>Protease Inhibitor</th>
<th>Effect of rifampin on PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saquinavir</td>
<td>↓ by 80%</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>↓ by 35%</td>
</tr>
<tr>
<td>Indinavir</td>
<td>↓ by 90%</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>↓ by 82%</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>↓ by 81%</td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>↓ by 75%</td>
</tr>
</tbody>
</table>
HAART and Rifampin-Based TB Therapy

- Recommended regimen: **efavirenz plus 2 nucleosides (higher dose EFV)**
 - Use EFV for adults and children >3 years old
 - Avoid 1st trimester of pregnancy

- Choice of nucleosides
 - Usual adult first line therapy: zidovudine + lamivudine (AZT/3TC)
 - Atripla – tenofovir/emtracibine/efavirenz

Risk Factors for TB Treatment Failure or Relapse in Studies of HIV-Related TB

- CPCRA/ACTG study - low CD4 cell count
- TBTC Study 22 - low CD4 cell count, extrapulmonary involvement, azole use, younger age
- TBTC Study 23 - low CD4 cell count
- Baltimore cohort - low CD4 cell count
Treatment Options: ART During Rifampin-Based TB Therapy

- Other options:
 - “Triple NRTI” = Abacavir or tenofovir plus 2 NRTIs
 - Not as potent as other options, but no drug interactions
 - Nevirapine (NVP) plus 2 NRTIs
 - Some successful clinical experience in Spain
 - Persistent worry about low blood levels
 - Some suggest increasing NVP to 300 mg twice-daily

When to Start ART During TB Therapy?

- HIV-infected TB patients should be evaluated for ART immediately
 - CD4 ≤ 200 - start ART between 2-8 weeks after start of anti-TB therapy
 - CD4 > 200 but < 350 - start ART 8 weeks after start of anti-TB therapy
 - CD4 ≥ 350 - defer ART but re-evaluate at 8 wks and at end of anti-TB therapy

- HIV-infected patients already on ARVs who develop TB should begin anti-TB meds immediately
Overlapping Drug Toxicity Profiles: Antituberculosis and Antiretroviral Drugs

<table>
<thead>
<tr>
<th>Side effect</th>
<th>Anti-TB</th>
<th>Anti-HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>PZA, RIF</td>
<td>NVP, EFV, ABC</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>INH, PZA</td>
<td>AZT, AMP, IDV</td>
</tr>
<tr>
<td>↑ AST</td>
<td>INH, PZA, RIF</td>
<td>NVP, IDV, Hep C</td>
</tr>
<tr>
<td>↓ WBC</td>
<td>RBT</td>
<td>AZT</td>
</tr>
</tbody>
</table>

Immune Reconstitution Syndrome

- Also called Immune Reconstitution Inflammatory Syndrome (IRIS)
- “A strong inflammatory response to a pre-existing infection or condition by an immune system that has been invigorated by the recent initiation of HAART.”
- TB-related IRIS can be associated with significant morbidity and mortality
- May require use of corticosteroids
Examples of Severe IRIS Reactions

- Enlarging adenopathy that compromises function (airway, GI tract)
- Expanding CNS lesion
- Acute respiratory failure
- Acute adrenal insufficiency
- Bowel perforation

Factors Associated With IRIS Worsening

<table>
<thead>
<tr>
<th></th>
<th>Paradoxical worsening (n=6)</th>
<th>No paradoxical worsening (n=76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, yr</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>Male (%)</td>
<td>83%</td>
<td>70%</td>
</tr>
<tr>
<td>Pulmonary + extrapulmonary TB</td>
<td>83%</td>
<td>24%</td>
</tr>
<tr>
<td>Median initial CD4 cell count</td>
<td>69</td>
<td>154</td>
</tr>
</tbody>
</table>

Chest 2001; 120:193-7
Characteristics of Patients Having Paradoxical Reactions vs. Those Not Having Paradoxical Reactions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Paradoxical reaction (n = 6)</th>
<th>No paradoxical reaction (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial CD4 cell count</td>
<td>46.5 (30-312)</td>
<td>35 (18-225)</td>
</tr>
<tr>
<td>HIV RNA log_{10} copies/ml</td>
<td>6.1 (6.0-6.3)</td>
<td>5.1 (5.0-5.7)</td>
</tr>
<tr>
<td>Change in HIV RNA after HAART</td>
<td>-2.4 (-2.1- -4.1)</td>
<td>0.4 (0.2- -2.8)</td>
</tr>
<tr>
<td>Time from TB therapy to HAART, days</td>
<td>22.5 (0-60)</td>
<td>110 (0-375)</td>
</tr>
<tr>
<td>Time from TB therapy to HAART <60 days</td>
<td>100%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Arch Intern Med 2002; 162:97-99

Monitoring

- **Efficacy**
 - Follow-up sputum examination as per program protocol
 - Improvement in cough, fever, and weight gain

- **Side effects**
 - Observe for rash, symptoms/signs of hepatitis, anemia, peripheral neuropathy
Coordination of Services

- TB and HIV care services should be coordinated
- TB staff need to be aware: many HIV-positive TB patients develop other HIV-related illnesses during TB treatment and many HIV-positive persons or AIDS patients develop TB during HIV care or under treatment with ART

TB/HIV Collaborative Activities

- Coordination needed between HIV and TB programs and clinics to:
 - Prevent HIV among TB patients
 - Prevent TB among HIV patients
 - Test patients and contacts for both conditions
 - Coordinate therapy
 - Avoid drug interactions
 - Maximize adherence with DOT/treatment supporters
Summary

- TB increases HIV progression
- HIV increases TB progression
- Standard TB treatment usually cures TB in TB/HIV, length of therapy – 6-9 months (esp. if CD4 < 100)
- Despite successful TB treatment, mortality among TB/HIV patients remains high
- All HIV/TB patients qualify for cotrimoxazole prophylaxis and it improves survival

Summary

- HAART for eligible patients greatly improves survival
- Different HAART regimens may be required because of drug interactions with rifampin
- Programmatic synergy between the TB and HIV programs is needed to improve treatment of both conditions and will reduce disease and death