TB Nurse Case Management
Norman, Oklahoma
October 8-10, 2008

Diagnosis and Treatment of Tuberculosis
David E. Griffith, MD
October 8, 2008

Diagnosis and Treatment of Tuberculosis

David E. Griffith, MD
Assistant Medical Director
Heartland National TB Center
Increasing Complexity of TB Control Efforts

- Foreign born
- Drug Resistant
- TB in recipients of TNF alpha blockers
- TB in transplants
- TB in dialysis and chronic renal failure
- HIV TB
- MDR TB

- Decreasing clinical experience
- Loss of traditional experienced workers
- TB care is more specialized
- Shift of services to private sector
 - Providers may see only one case in a lifetime of practice

Good Outcomes Depend on Complete Evaluation and a Correct Diagnosis

- Medical Evaluation
 - Signs and symptoms
 - History of risk factors and/or exposures
 - Physical exam
- Chest X-ray
- Bacteriology
 - Cultures of suspected site
 - Susceptibility testing of positive isolate
 - Rapid diagnostic tests (HPLC, NAA)
Where Are Patients Diagnosed With TB?

• California, 18 counties with highest TB morbidity
 – Hospital inpatient evaluation 45%
 – Outpatient clinic evaluation 32%
 – TB clinic 12%

• Seattle, Washington
 – Outpatient evaluation 48%
 – Hospital evaluation 32%
 – TB clinic 2%

Diagnosis of Tuberculosis

• Clinical suspicion is the single most important factor in the timely diagnosis of tuberculosis.

• The greatest risk for nosocomial transmission of tuberculosis is exposure to an undiagnosed case of TB.

• There is no diagnostic substitute for thinking about the diagnosis.
Reasons a Diagnosis of TB is Missed or Delayed

• Patient is diagnosed as a community acquired pneumonia and responds to a fluroquinolone
• Atypical clinical and radiographic picture
• Extrapulmonary disease
• Clinician does not consider TB a diagnosis

TB in a Recent Refugee
Classic Presentation of TB

• **Risk factors**: immigration from high incident area, homelessness, incarceration, IVDU, exposure to TB

• **Classic symptoms**: prolonged cough, sputum, fever, weight loss, night sweats

• Positive tuberculin skin test (TST)

• Positive QuantiFeron TB Gold Test

• CXR with upper lobe cavitary infiltrates

Atypical Presentation of TB

• HIV infection, chronic renal disease, diabetes, immunosuppression may alter presentation
 – CXR may be atypical; lower lobe infiltrate, adenopathy or completely normal
 – Negative TST or QTF Gold
 – Negative smear in up to 50%
 – Atypical clinical presentation
Diagnosis May Be Missed by Negative Evaluations

- CXR normal in 10% HIV +, atypical in others
- Smear neg ≥ 40%
- AFB smear
- TST
- TST neg ≥ 40%
- Symptoms may be absent or atypical

Consideration of Risk Important Especially with Negative Tests

THINK TB!

Case Study-Late Diagnosis

- 25 yr old male with 9 month history of cough and weight loss
- ER visit 6 months earlier for “bronchitis”
- Incarcerated along border x 2 yrs
- Large # family contacts and small children
- Worked as a caterer
- Picked up from mall by EMS due to severe coughing spell
Delay in Diagnosis of TB With Empiric Antibiotic Use

- Prospective study to assess delay in dx
 - June 2000 – Dec 2001 of patients who received antibiotics for non-Tb dx before Tb dx
 - 85/158 Tb patients received antibiotics first
 - 30 patients received more than one course
 - 52 courses FQN to 45 patients (38%)
 - 33 courses macrolides to 29 patients (24%)
 - 11 courses amoxicillin
 - 11 courses cephalosporins
 - 10 courses trimethoprin-sulfamethoxazole
 - 2 courses of clindamycin, 1 of vancomycin
 - 17 courses unknown

» Int J Tuberc Lung Dis 2005;9:392-397
Delay in Diagnosis of TB With Empiric Antibiotic Use

- Median delay 39 days compared to 15 controls who did not receive antibiotics
- Delay similar with all antibiotic classes
- 41/54 (79%) patients who did not get CXR at first visit received antibiotics
- 41/105 (42%) with CXR at 1st visit received antibiotics
 – 31/54 (57%) dx with CAP received CXR
- More widespread use of CXR may help

Int J Tuberc Lung Dis 2005;9:392-397

Guidelines for Evaluation of Pulmonary TB in Adults

- Any cough ≥ 2-3 wks plus at least one additional symptom: fever, night sweats, weight loss or hemoptysis
- Any high risk for TB; unexplained illness including respiratory symptoms ≥ 2-3 wks
- CXR: if suggestive of TB collect 3 sputum specimens for AFB and culture
- CXR: if suggestive of TB collect 3 sputum specimens for AFB and culture

Controlling TB in U.S. MMWR: Nov 2005
Guidelines for Evaluation of Pulmonary TB in Adults

- Any HIV infected with unexplained cough and fever
- Any at high risk for TB with dx CAP & not improved >7 days
- Any at high risk for TB with incidental findings on CXR of TB even minimal/no sx

- CXR and collect 3 sputum for AFB smear and culture
- CXR and 3 sputum for AFB smear and culture
- Review prior CXR if available, 3 sputum for AFB smear and culture

Controlling TB in U.S. MMWR: Nov 2005

Fever in 7th month of Pregnancy

- 6 month history of cervical adenopathy
- 6 week history of fever, wt loss and abdominal pain
- Tuberculin skin test negative
- No response to multiple antibiotics
- Pleural effusion and infiltrate on CXR
Missed Diagnosis

Pulmonary consult for thoracentesis:
Cervical node biopsy: AFB+, granuloma
Disseminated disease
 nodes, lung, liver, ascites, multiple
 abdominal masses, **placenta**, ovaries, bowel
Clinical deterioration, hypotension, emergent C section

Missed Diagnosis

M Tb resistant to INH grew from sputum and nodes
Infant also treated for tuberculosis as placenta was positive for AFB
Missed Diagnosis

Pulmonologist consulted for thoracentesis obtained a **history of risk factors** for TB

Born in Mexico
Prior +TST at US entry at age 15
Treated with INH x 6 mo
Exposure to uncle in Mexico who died with TB 2 years ago

TST usually negative with extensive disease!
Treatment of Tuberculosis

American Thoracic Society, CDC, and Infectious Diseases Society of America

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What’s New in this Document</td>
<td>1 CONTENTS OF THE 80-Page Document</td>
<td>15 Summary</td>
<td>19</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Updates and Changes in TB Therapy

- **Obtain a sputum smear and culture** at the end of the initial phase of treatment (2 months) to identify patients at increased risk of relapse.
- **Extended therapy** is recommended for patients with drug-susceptible pulmonary TB who have cavitation on the initial CXR and who have a positive sputum culture at the time 2 months of therapy is completed.
- **Counting Doses** – treatment completion is defined by number of doses taken as well as duration of treatment.

Updates and Changes in Therapy

- Changes in dosing schedules:
 - HIV + individuals with low CD4 counts should NOT be given twice weekly therapy.
 - Daily therapy can be 7 days per week OR can be 5 days per week IF given by DOT and the M Tb is drug susceptible.
Role of New Agents

- **RIFABUTIN (RBT):** May be used as a primary drug for patients (especially HIV+) receiving medications having unacceptable interactions with rifampin (e.g. Protease Inhibitors, methadone)

- **Fluoroquinolones** (Levofloxacin-agent of choice) may be used when first line drugs are not tolerated or the organism is resistant
 - Moxifloxin rapidly becoming agent of choice

Treatment of Culture-Positive Drug Susceptible Pulmonary TB

- General conclusions from the literature
 - 6 mo (26 wk) is the MINIMUM duration of RX
 - 6 mo regimens require rifampin throughout and PZA for the first 2 months
 - 6 mo regimens are effective without INH
 - Intermittent regimens (2-3x/wk):
 - GIVEN by DOT ONLY
 - Drug susceptible isolate
 - Regimen contains INH and rifampin
Treatment of Culture-Positive Drug Susceptible Pulmonary TB

- General conclusions from the literature:
 - Without PZA - minimum duration is 9 months
 - Without rifampin - minimum duration is 12 months (up to 18 months)
 - Streptomycin and ethambutol (EMB) are approximately equivalent in effect (BUT concern about increasing Streptomycin resistance among foreign born leads to preference of EMB for initial therapy)

<table>
<thead>
<tr>
<th>Drugs Currently in Use</th>
<th>First line</th>
<th>Second line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid (H)</td>
<td>Ethionamide</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>Rifampin (Rif)</td>
<td>Amikacin</td>
<td>Moxifloxacin</td>
</tr>
<tr>
<td>Rifabutin (RBT)</td>
<td>Capreomycin</td>
<td>Gatifloxacin</td>
</tr>
<tr>
<td>Rifapentine</td>
<td>Streptomycin</td>
<td>Clofazamine</td>
</tr>
<tr>
<td>Ethambutol (EMB)</td>
<td>Cycloserine</td>
<td>?Linezolid</td>
</tr>
<tr>
<td>Pyrazinamide (Z)</td>
<td>PAS</td>
<td>?Imipenem</td>
</tr>
</tbody>
</table>
Treatment of Patients with TB Disease

• Initiation phase of therapy
 – 8 weeks
 – INH, Rifampin and PZA +/-EMB

• Continuation phase of therapy
 – 16 weeks
 – INH and Rifampin

Treatment of Culture Positive Pulmonary Disease

Regimens Rated \textit{A-1 (HIV Uninfected)}

\textbf{INITIAL PHASE}

2 mo I,R,Z,E daily (56 doses, 8wks) \textbf{or}
2 mo I,R,Z,E 5x/wk (40 doses, 8wks) \textbf{then}

\textbf{CONTINUATION PHASE}

-4 mo - I,R daily (126 doses, 18 wks) \textbf{or}
-4 mo – I,R 5x/wk (90 doses, 18 wks) \textbf{or}
-4 mo – I,R, 2x/wk (36 doses, 18 wks)

Continuation phase increased to 7 mo if initial CXR shows cavities and Sputum culture is positive at 2 mo
Treatment of Culture Positive Pulmonary Tuberculosis

- **Regimens Rated A-II (HIV Uninfected)**
 - Initial phase
 - 2 weeks – I,R,Z,E daily (14 doses) *then*
 - 6 weeks – I,R,Z,E *twice* weekly (12 doses)
 - Continuation phase
 - PLUS (DOT only)
 - -4mo – I,R Twice weekly (36 doses, 18 weeks) *or*

- **Regimens Rated A-III (HIV Uninfected)**
 - Initial phase
 - 2 weeks – I,R,Z,E 5x/week (10 doses) *then*
 - 6 weeks – I,R,Z,E *twice* weekly (12 doses)
 - Continuation phase
 - PLUS (DOT only)
 - -4mo – I,R Twice weekly (36 doses, 18 weeks) *or*
Treatment of Culture Positive Pulmonary TB

– THRICE WEEKLY – “HONG KONG” REGIMEN

» Regimen Rated BI (HIV uninfected)

– Initial phase
 • 2mo – I,R,Z,E 3x/week (24 doses, 8weeks)

PLUS

– Continuation phase
 • 4mo – I,R 3x/wk (54 doses, 18 weeks)

Baseline and Follow-up Evaluation

• Susceptibility testing on all initial isolates to INH, Rifampin & EMB

• For pulmonary TB – Monthly sputum until two consecutive cultures are negative
 – -2 month sputum is crucial
 – 80% should convert by 2 mo, 95% by 3 mo
TBTC STUDY 22: RATE OF FAILURE/RELAPSE, BY REGIMEN, SPUTUM CULTURE, AND CHEST RADIOGRAPH

![Graph showing rate of failure/relapse](image)

- **Rate of Failure/Relapse**
 - Positive: 16.7%
 - Negative: 8.9%
 - Cavitary: 2.5%
 - Non-Cavitary: 2.9%

Prolongation of Continuation Phase

- **Rational for Extending Therapy**
 - Continuation of PZA for an additional 2 months was not helpful in drug susceptible disease
 - Prolongation of continuation phase by 2 months decreased relapses in silico-tuberculosis from 20% to 2%
Effect of Prolonging Therapy on Treatment Failure or Relapse

Treatment of Silico-tuberculosis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SHRZ - 6mo*</th>
<th>SHRZ – 8mo*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=49)</td>
<td>(n=50)</td>
</tr>
<tr>
<td>Relapse</td>
<td>20%</td>
<td>2%</td>
</tr>
</tbody>
</table>

* Three times weekly therapy

Am Rev Respir Dis 1991;143:262-267

New Treatment Guidelines
Tailoring Treatment Regimens

- Prolongation of continuation phase
 - Positive 2 month culture with cavitary disease
 - Extrapulmonary disease
 - Meningitis
 - Disseminated disease in children
 - HIV TB in children and adolescents
New Treatment Guidelines
Tailoring Treatment Regimens

• Consider Prolongation of continuation phase when patient:
 – Slow to clinically or radiographically respond
 – Positive 2 month culture OR cavitary disease?
 – <10% ideal body weight?

Relapse

• Circumstance in which a patient becomes and remains culture-negative while receiving antituberculosis drugs but at some point after completion of therapy, either becomes culture-positive again or experiences clinical and radiographic deterioration consistent with active tuberculosis
Treatment Guidelines 2003

• “Microbiological Confirmation of Relapse Should be Pursued Vigorously”
 – Confirm true relapse
 – Use DNA fingerprinting to identify new infection causing the disease versus relapse
 – Identify drug susceptibility pattern of isolate

Relapsed Tuberculosis

• Most relapses occur within the first 6 – 12 months after stopping therapy but some occur 5 or more years later
• Nearly all drug susceptible patients who were treated with a rifamycin and received DOT will relapse with drug susceptible organisms
 – Treat with standard RIPE regimen
Relapsed Tuberculosis
“situations of concern”

• If no culture or susceptibility studies are done there may be an increased risk of drug resistance as a cause of relapse (foreign born)
 – Usual treatment with RIPE
 – Watch carefully for clinical deterioration, may need to expand the regimen
 • Consider an expanded regimen if immune suppressed and significant disease

• Patients treated with self administered therapy and those non compliant are at risk of resistance
 – Consider expanded regimen, especially if immune suppressed
 • RIPE plus a fluoroquinolone and an injectable
Treatment Related Risk Factors for Early Relapse of TB

• Evaluation of 113 cases of relapsed Tb when matched with case controls
 – Non-cavitary Tb, relapse rate: 1.1%
 – Cavitary Tb relapse rates:
 • Thrice weekly Rx: 7.8%
 • Daily Rx: 3.3%
 • Extended thrice weekly: 0.5%
 • Extended daily: 0.4%
 – Extending either intensive phase or both was beneficial

 » Chang, Am J Respir Crit Care Med. 2004; 170: 1124-30

Dose-Response Relationship
Daily versus Intermittent Therapy

• Review of trials, 200 cases of relapse, 6 mo Rx
• Relapse rates higher when intermittent therapy used especially in initiation phase
 – Daily IP, 3 x/wk CP: 1.6%
 – Daily IP 2x/wk CP: 2.8%
 – 3/wk IP and CP: 5.0%
• Relapse higher especially with cavitary disease and + 2 month cultures
 – Only 6 month daily or 6 mo daily IP and 3/wk CP had relapse rates <5%

 » Chang Am J Respir Crit Care Med 2006; Vol 174 p 1153
Medical Factors Associated With Relapse of Tuberculosis

- Cavitary TB
- Extensive disease on CXR
- Positive 2 month culture
- Associated medical conditions
 - Diabetes
 - HIV
- Tuberculous lymphadenitis
- Underweight at diagnosis and failure to gain
- Drug resistant disease
- Prior treatment for tuberculosis

Treatment Factors Associated with Relapse of Tuberculosis

- Dosing intensity
- DOT
- Adherence
- Duration of therapy
 - Intensive phase
 - Continuation phase
 - Both
- Rifampin containing regimen
In the Treatment of TB, You Get What You Pay For…

- “A consistent theme has begun to appear: more extensive disease requires more treatment, and the fewer total doses, the higher the risk that treatment will prove inadequate”
 - What should we conclude?
 - First: More is more and less is less
 - More treatment means more cures
 - Second: Programs need to consider some individualization of therapy
 - Third: This should not deter us from intermittent therapy but should remind us that sophisticated management based on case-specific circumstances is still needed
 - We should not be surprised that individuals differ in their response.

Case Study

- 47 yr old male, recurrence of TB
 - Weight at Dx 117 pounds (<10% IBW)
 - Two months, 114 pounds
 - Three months, 114 pounds
 - Four months, 115 pounds
- Extensive cavitary disease on CXR
- Sputum smear + 5 ½ months
- Sputum culture + 3 ½ months
Lack of Weight Gain and Relapse Risk, TBTC Study 22

- Relapse risk high in those underweight at diagnosis 19.1 versus 4.8%
- Among pts underweight at Dx, weight gain ≤ 5% after 2 mo Tx:
 - Relapse risk 18.4 vs. 10.3%
 - If also cavitary disease: 18.9%
 - If cavitary and + 2 month culture: 50.5%

Weight as A Risk Factor

- Relative risk of TB during 8-19 yr f/u of 1,717,655 Norwegians in screening program was 5 times greater in the lowest body mass index (BMI) category

Problems with TB Treatment

- Rifampin is the KEY DRUG for all “short course” (≈ 6 month) regimens.

- Rifampin is THE most potent inducer of hepatic microsomal enzymes known.
Rifamycin Drug Interactions

- HAART (Protease inhibitors and efavirenz)
- Medications for other comorbidities
 - Itraconazole, Fluconazole
 - Clarithromycin
 - Methadone
 - Coumadin
 - Immunosuppressive therapy for transplants
 - Chemotherapeutic agents

Rifabutin may be a good substitute to minimize interactions

Extrapulmonary TB

- Treatment regimens similar to pulmonary TB EXCEPT for
 - TB meningitis – optimal therapy still not defined; 9-12 months recommended (AIII)
 - Disseminated TB in children
 - ?? Disseminated TB in adults
 - Can you really use 6 month therapy?
Active TB During Pregnancy

- Treatment:
 - INH, Rifampin, Ethambutol x 9 months
 - Stop ethambutol if susceptible to INH and rifampin
 - Follow carefully for hepatotoxicity
 - During pregnancy
 - Three months postpartum

Therapy in Special Situations
Renal Disease

- No change in dose or dosing interval for INH and Rifampin even with severe renal disease
- If creatinine clearance <30
 - Modify dosing intervals of EMB and PZA
 - If sensitivity known, treat with I,R, +/- Z
- Dose medications after dialysis
- Serum drug levels especially for EMB
TB in Patients treated with TNF-α Antagonists

- TNF-α: key role in control of latent TB
 - Animal models
 - Clinical disease in recipients
- Current agents:
 - Infliximab (Remicade)
 - Etanercept (Enbrel)
 - Adalimumab (Humira)
- Treatment with these agents is associated with the development of active TB, often disseminated with aggressive progression of disease

TB reported more frequently than other OI

Warning: Risk Of Infections Infliximab

- Tuberculosis (frequently disseminated or extrapulmonary at clinical presentation), ...and other opportunistic infections have been observed in patients receiving Remicade some of these infections have been fatal.
- Patients should be evaluated for LTBI with a TST.
- Treatment of LTBI should be initiated prior to therapy with Remicade.
- SEE WARNINGS
Warnings

- Remicade should not be given in patients with a clinically important active infection.
- Caution...when considering the use of Remicade in patients with a chronic infection or a history of recurrent infections.
- Patients should be monitored for signs and symptoms of infection while on or after treatment with Remicade.
- If a patient develops a serious infection Remicade should be discontinued.

TB in Patients treated with TNF-α Monoclonal Antibodies

- 70 cases of active TB reported in patients treated with infliximab (up to 5/29/01)
 - TB developed after median of 12 weeks
 - 48 developed disease after 3 or less infusions
 - 48/70 (69%) had extra pulmonary disease
 - 17 disseminated
 - 11 lymphatic, 4 peritoneal, 2 pleural
 - 1 each meningeal, enteric, paravertebral, bone, genital and bladder
 - Confirmed by biopsy in 33 patients
 - 12 patients died despite stopping TNF-α antagonist

Keane N Engl J Med 2001; 345: 1098-104
TB in Rheumatoid Arthritis and Effect of TNF-α Antagonists

• TB incidence in 6,460 infliximab treated patients followed prospectively in Spanish data base
 – 61.9/100,000
 – No cases with other agents
• TB incidence in 10,782 patients 1998-1999 prior to widespread use of infliximab
 – 6.2/100,000
• Marked decrease in TB with use of screening
 – No cases in patients who had had TST or prophylaxis
 » Gomez-Reino Arthritis Rheum 2003; 48:2122-2127

Management of Patients with Suspected Infection Receiving Treatment with TNF-α Antagonists

• Stop TNF-α antagonist if fever and other signs/symptoms consistent with an infectious process occur in a patient at possible risk for tuberculosis,
• Aggressive evaluation
• Start empiric therapy for suspected pathogens while waiting cultures
 • Dual infections have been reported
• Disagreement about when or whether TNF-α antagonist can be restarted.
Beyond the Guidelines

- **Do not use TNF-α antagonist during active serious infection**
 - Hold Rx at least until smears (cultures?) negative & pt well
 - Attempt to complete TB Rx prior to restarting. (Keane NEJM)
 - RATIO: Resumption of TNF blocker not recommended
 » French cooperative group - Ann Rheum Dis 2003; 62: 791-792
 - In setting of active disease pts must complete RX before infliximab
- **Use the least immunosuppressive agent**
 - Infliximab is associated with highest risk of TB
- **Immunosuppressive effects of infliximab continue for at least 2 months after stopping drug.**
 - Continue to suspect OI’s 6 mo after d/c of drug
- Steroid therapy safe during TB treatment

Management of Delayed Bacteriologic Response

- If cultures positive at 2-3 months:
 - Extend therapy if cavitary disease
 - Evaluate possible causes
 - Non-compliance
 - Unrecognized drug resistance
 - Malabsorption
 - Repeat susceptibility studies
 - Evaluate clinical and radiographic response
Prolonged Positive Smears

- 51 year old male
- Slow clinical and CXR improvement
- Prolonged conversion of cultures (10 weeks)
- Prolonged conversion of smears (7½ months)

W.C. 12-18-01

Significance of Persistent + AFB Smears

- Review of lab data of 428 patients, 30 with smear persistently + >20 weeks
 - 23/30 had a negative culture
 - 7/30 positive culture "treatment failure"
- Of those with negative cultures - none relapsed
- Most received standard therapy for 12 months; PZA was continued for 2-3 months
 » Al-Moamary Chest 1999; 116:726-731
Prolonged Positive Smears

• 12 months of RX
• Culture and smear – 20 months after stopping TB meds
• CXR still extensive cavitary infiltrates

DX and Management of Treatment Failure

• Treatment failure: “Patients whose sputum cultures remain positive after 4 months of treatment are considered to have failed treatment”

• “Patients with treatment failure should be assumed, until proven otherwise, to have drug-resistant organisms and be treated with multiple agents that they have not received before.

• A single drug should never be added to failing RX

• It is “prudent to add at least 3 new drugs”
 » MMWR Treatment of Tuberculosis 2003; 52
Tuberculosis Drug Serum Level Monitoring

• Routine therapeutic drug level monitoring not recommended

• Drugs which exhibit concentration dependent killing (fluroquinolones, rifampin, amikacin and streptomycin) may be more effective and less toxic if dosing is individualized and maximized
 – Especially in toxic or poorly responding patient

Tuberculosis Drug Serum Level Monitoring Recommended

• Delayed response to therapy
• Advanced AIDS with evidence of malabsorption
• Seriously ill patient to maximize therapy
• Toxicity evaluation
• Use of second line drugs
• Acquired drug resistance
• Relapse
• Potential for drug-drug interactions
• Renal and hepatic insufficiency
Low serum INH and Treatment Failure

• In patients treated with once weekly INH/Rifapentine all INH pharmacokinetic parameters lower in pts with failure/relapse
 – Median INH AUC₀-₁₂
 • 36 in 22 pts with failure or relapse
 • 55.9 mcg/hr/ml in 49 with cure.
 – 2 HIV + pts with acquired rifamycin resistance had very low INH levels and pharmacokinetic parameters.

• Twice weekly INH/Rifampin AUC were similar in pt with failure/relapse and cure
 » Weiner AJRCCM 2003

Low Rifabutin Levels Associated with Rifampin Resistance

– Pharmokinetic evaluation of HIV+ patients in rifabutin trial
 – (Rifabutin 300mg/INH 300mg daily)

• Patients with treatment failure or relapse with acquired rifamycin resistance
 – Had significantly lower rifabutin levels measured by area under curve
 – Patients also had significantly lower INH levels
Management of Treatment Interruptions

• Initial phase of therapy
 – <14 days – complete standard # of doses
 – >14 days – restart from the beginning

• Continuation phase
 – >80% doses by DOT – if initial smear–, may stop
 – Repeat culture
 • >3 month interruption restart from beginning
 • <3 month interruption, culture + restart
 • <3 month interruption, culture - give an additional 4 months

Lessons

• Clinical TB Issues May Not Be Answered by Prospective Controlled Studies

• Discuss Difficult Case Management with Colleagues with Clinical TB Experience
When to Ask for Consultation

- HIV TB
- Renal Disease
- Drug resistance
- Slow to convert
- Treatment relapse
- Treatment failure
- Toxicity
- Management of treatment interruptions
- When you have a question you need answered

Where to get more information

- HEARTLAND NATIONAL TB CENTER
 - 1-800-TEX LUNG: Medical Consultation and Technical Assistance Line
 - Future training courses
- CDC
- TB Educate
- TBresources.com