Tb Medications and Adverse Effects

Charles Harvey DO
Medical Consultant/Associate TB Control Officer
Oklahoma State Department of Health
October 8, 2008
Dorland’s Medical Dictionary says:

- **Side effect** – a consequence other than the one(s) for which an agent or measure is used, as the adverse effects produced by a drug, especially on a tissue or organ system other than the one sought to be benefited by its administration.

- **Adverse reaction** – unexpected, serious symptoms coinciding with the administration of a drug; see also “side effect”

Adverse Drug Reaction Defined

“**Official**”

“Unintended, undesirable, and unexpected effects of prescribed medications or of medication errors that require discontinuing a medication or modifying the dose, require initial or prolonged hospitalization, result in disability, require treatment with a prescription medication, result in cognitive deterioration or impairment, are life threatening, result in death or result in congenital anomalies”

JCAHO
Adverse Drug Events Defined
“Unofficial”

<table>
<thead>
<tr>
<th>Side effects</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpleasant, but mild reactions</td>
<td>Gas</td>
</tr>
<tr>
<td>No long lasting health effects</td>
<td>Bloating</td>
</tr>
<tr>
<td>Do not usually require changes in therapy</td>
<td>Mild nausea</td>
</tr>
<tr>
<td></td>
<td>Discoloration of body fluids</td>
</tr>
<tr>
<td></td>
<td>Irritability</td>
</tr>
<tr>
<td></td>
<td>Difficulty sleeping</td>
</tr>
<tr>
<td></td>
<td>Photosensitivity</td>
</tr>
<tr>
<td>Drug toxicity</td>
<td>Drug toxicity</td>
</tr>
<tr>
<td>More serious</td>
<td>Significant GI disturbances</td>
</tr>
<tr>
<td>May be life threatening</td>
<td>Hepatotoxicity</td>
</tr>
<tr>
<td>Require modifying the dose or discontinuation of drug</td>
<td>Dermatologic and hypersensitivity reactions</td>
</tr>
<tr>
<td>May require additional therapy and/or hospitalization</td>
<td>Ophthalmic toxicity</td>
</tr>
<tr>
<td></td>
<td>CNS toxicity</td>
</tr>
<tr>
<td></td>
<td>Neurotoxicity</td>
</tr>
<tr>
<td></td>
<td>Ototoxicity</td>
</tr>
<tr>
<td></td>
<td>Musculoskeletal adverse effects</td>
</tr>
<tr>
<td></td>
<td>Renal toxicity</td>
</tr>
</tbody>
</table>
First Line Drugs

- Isoniazid ~ early 50’s
- Rifampin ~ late 60’s
- Rifapentine
- Rifabutin ~ 1995
- Ethambutal
- Pyrazinamide (PZA)

Second Line Drugs

- Cycloserine
- Clofazimine ~ last resort usually
- Ethionamide
- Levofloxacin, Moxifloxacin, and Gatifloxacin (not avail. In US)
- P-Aminosalicylic acid (PAS) ~1944
- Streptomycin ~ 1944 (PAS and Strep were the first 2 TB drugs used)
- Amikacin/Kanamycin
- Capreomycin
- Augmentin
- Linezolid
Isoniazid

- Bacterialcidal
- Spectrum – Mtb mainly
- Adverse Drug Reaction (ADR) and Side Effects (SE)
 - hepatotoxicity
 - peripheral neuropathy (alcoholics and diabetics)
 - GI upset, headaches
 - rash

Uncommon SE at conventional dosing: hemolytic anemia, convulsions, dizziness, ataxia and psychosis
- cytochrome P-450 inhibitor

- Monitoring – liver functions mainly

INH continued:

- weak inhibitor of monoamine oxidase in plasma – avoid tyramine containing foods such as cheeses, wines, pickled meats, sauerkraut, tuna fish (could cause flushing, warmth, nasal stuffiness, mild tachycardia and systolic HTN)
- Tyramine – is metabolized by monoamine oxidase and causes the release of dopamine, epinephrine and norepinephrine
- There have been some articles expressing concern about the combination of SSRI’s and INH, because INH is a weak inhibitor of MAO in plasma. (Selective serotonin reuptake inhibitors and isoniazid: Evidence of a potential adverse reaction, Military Medicine, Dec 2001, Michael Doyle. Treatment of Comorbid Tuberculosis and Depression, Primary Care Companion, J Clinical Psychiatry 2001;3(6).)
- Monoamine oxidase inhibitors (MAOI’s) are a potentially dangerous drug that have been and are rarely used for the treatment of depression anymore due to the development of SSRI’s which are relatively safe.
- MAOI’s and SSRI’s are contraindicated due to the possibility of developing Serotonin Syndrome (excitation, diaphoresis, myoclonus, hyperthermia, rigidity, and Htn.)
Baseline Laboratory Monitoring
LTBI - INH

- Baseline LFT’s (ALT*, bilirubin) are not necessary except for patients with the following risk factors
 - HIV infection treated with HAART
 - History of chronic liver disease (hepatitis B/C, alcoholic hepatitis, cirrhosis)
 - Previous abnormal ALT and/or bilirubin
 - Regular use of alcohol
 - Pregnancy or early postpartum period (within 3 months of delivery)
 - Other: consider individually, e.g., “healthy individuals” > 35 yrs., patients taking other hepatotoxic drugs

*ALT: more specific for liver injury

Periodic Laboratory Monitoring
LTBI - INH

- Repeat laboratory monitoring if patient has
 - Abnormal baseline results (> 3 X ULN)
 - Repeat ALT, bilirubin
 - Screen for possible causes (viral, alcohol, hepatotoxic drugs)
 - Carefully weigh risks of treatment in setting of ALT elevation, chronic alcohol consumption, severe liver disease manifested by low albumin and coagulopathy or encephalopathy
 - Consider more frequent monitoring (q 2 – 4 wks. for first 2 – 3 mo.), if treated
 - Discontinue treatment if > 2 – 3 X increase above baseline, jaundice, or significant increase in bilirubin
 - High risk for adverse reactions (see indications for baseline screening)
Periodic Laboratory Monitoring
LTBI - INH

– Symptoms of adverse reaction
 • Hold medications until results of LFT’s obtained
– Liver enlargement or tenderness during examination

Periodic Laboratory Monitoring
LTBI - INH

• Asymptomatic increase in LFT’s occurs in 10-20% of persons taking INH
 • LFT’s usually return to normal without interruption of therapy
• Hold treatment if
 – Transaminase levels (ALT) > 3X upper limit of normal and patient has symptoms of hepatotoxicity
 – Transaminase levels (ALT) > 5X upper limit of normal and patient is asymptomatic
• More frequent monitoring (q 2 wks.) if rapid rise in ALT
Rifampin

- Bacterialcidal
- Spectrum – Mtb, staph, meningococcus, several others
- ADR
 - GI
 - rash
 - arthralgias, myalgias
 - hepatic – LFT’s, hyperbilirubinemia – competes with bilirubin for excretory pathways in the liver at the cellular level
 - thrombocytopenia – if dosing above 600mg/d risk increases
 - **pancreatitis**
 - cytochrome P-450 inducer – lots of significant drug interactions, decreases levels of oral anticoagulants, benzo’s, oral contraceptives, theophyllin, phenytoin, methadone, thyroid hormone, HIV meds (some PI’s and NNRTI’s), Ca channel blockers, beta blockers, etc..

Rifabutin

- Cross resistance with rifampin
- Less LFT effect than rifampin
- Less potent cytochrome inducer than rifampin ~ 40%
- ADR
 - uveitis
 - neutropenia – dose related
 - hepatitis
 - rash
PZA - pyrazinamide

- Bacterialcidal
- ADR
 - rash
 - elevates uric acid – usually asymptomatic, but can precipitate acute gouty arthritis attacks
 - hepatotoxicity – usually with higher doses, PZA causes problems with the liver less frequently than INH, but when it does, it can be more severe and prolonged
 - arthralgias
 - can affect the management of diabetes patients
- Lab – LFT’s, uric acid levels, renal function

Ethambutal

- Bacteriostatic/cidal in higher doses
 - primarily used to prevent emergence of resistant organisms
- Spectrum – Mtb, MOTT, MAC
- ADR –
 - optic neuritis (retrobulbar) – which affects visual acuities and red/green color vision
 - can affect one or both eyes
 - effect is dose related
 - baseline testing – visual acuities (Snellen) and Ishihara charts to check for color discrimination. Toxicity is reversible if caught early and meds stopped.
 - Blindness can occur
 - rash, increased uric acid levels (not as bad as PZA)
Baseline Laboratory Monitoring
TB Disease

• All adults
 – AST, ALT, bilirubin, alkaline phosphatase, serum creatinine, CBC with platelet count
 – HIV
 • CD-4 lymphocyte count, if HIV-infected
• Screen for viral hepatitis in at risk patients
• Amikacin: serum creatinine

Periodic Laboratory Monitoring
TB Disease

• Unnecessary if treated with first-line drugs unless
 – Baseline lab abnormalities
 – Chronic alcohol consumption
 – Other hepatotoxic drugs
 – Viral hepatitis or history of liver disease
 – HIV infection
 – Prior DILI (drug induced liver injury)
 – Clinical reasons to obtain lab measurements
Overview

<table>
<thead>
<tr>
<th>DRUGS*</th>
<th>TOXICITIES</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>GI Disturbances</td>
<td>Drugs Involved</td>
</tr>
<tr>
<td>Rifampin/Rifabutin</td>
<td>Drug-Induced Hepatitis</td>
<td>Monitoring</td>
</tr>
<tr>
<td>PZA</td>
<td>Immune Reactions</td>
<td>Assessment</td>
</tr>
<tr>
<td>EMB</td>
<td>Ophthalmic Toxicity</td>
<td>Response</td>
</tr>
<tr>
<td>(Fluoroquinolones: LV, MX, GT)</td>
<td>CNS/Neurotoxicity</td>
<td></td>
</tr>
<tr>
<td>(Aminoglycosides: AK, KN, SM)</td>
<td>Ototoxicity</td>
<td></td>
</tr>
<tr>
<td>*Treatment of TB Disease</td>
<td>Musculoskeletal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal Toxicity</td>
<td></td>
</tr>
</tbody>
</table>

ESRD/Dialysis patients

- Usually give meds 3X a week after dialysis to prevent meds from being dialyzed and to facilitate DOT.
- INH and RIF is metabolized by the liver and could be given daily but usually given 3X a week
- PZA, EMB, fluoroquinolones, strep (and other injectibles) need to be adjusted to 3X per week due to there metabolism by the kidneys.
Hepatitis and HIV

- HIV - Rifampin causes decreases in certain HIV meds (protease inhibitors and NNRTI’s), usually use Rifabutin.
- HCV – PZA is not used, will try and use Rifampin for PT vs. INH due to less hepatotoxicity.
- If Class 3 – will utilize controlled toxicity and change drugs if patient becomes symptomatic or if liver functions are > 5X the upper limits of normal.

Hepatitis, clinical signs

- Early – fatigue, rash, poor appetite, nausea, bloating
- Late – vomiting, abdominal pain, jaundice, dark urine, light stools, neurological problems
- Lab eval. – AST/ALT, bilirubin, clotting studies (evaluates extent of inflammation and liver function)
General rules of thumb for hepatotoxicity

- Hold meds if LFT’s > 3x normal and pt is symptomatic
- Hold meds if LFT’s > 5x normal in the absence of symptoms
- Hold meds if T. bili is increased > 2x normal with no other poss. explanation

Pregnancy

- Untreated TB represents a far greater risk to the pregnant patient than does treatment of the disease
- Isoniazid, rifampin, ethambutal and PZA
- PZA used in UK and WHO regions without adverse fetal consequences
- Insufficient data in US for routine PZA use.
- Aminoglycosides should not be used due to effects on ear development and risk of congenital deafness
- PAS was used in the past with INH w/o consequence
- Other drugs, fluoroquinolones, cycloserine, ethionamide, not enough data
Drug Interactions

• INH and RIF
• Cytochrome p450 isoenzymes
• INH is a cytochrome inhibitor
• RIF is a cytochrome inducer
• Isoniazid may increase the plasma concentrations of certain drugs by inhibiting their elimination, such as:
 • phenytoin, carbamazepine, valproic acid
 • warfarin, theophyllin, to name a few.

Drug Interactions cont.

• Rifampin (rifamycins) may decrease the plasma concentrations of many drugs by speeding up their elimination, such as:
 • phenytoin, carbamazepine, valproic acid
 • warfarin, theophyllin, digoxin, certain HIV meds.
• Rifamycins list is much longer.
Drug Interactions cont.

- Studies suggest that the inhibitory effects of INH is outweighed by the inductive effect of RIF,
- so the overall effect of combined therapy with INH and RIF is to decrease the serum concentrations of the previously mentioned drugs,
- but probably not as great a decrease if rifampin was given by itself.
- Monthly Monitoring of drug levels

Common Side Effects and Toxicities

- INH – hepatitis, peripheral neuropathy, hypersensitivity, sleep and concentration difficulties, optic neuritis, arthralgias
- Rifampin – hepatitis, febrile reaction, rash, GI upset, thrombocytopenia (rare), pancreatitis
- Rifabutin – thrombocytopenia, hepatotoxicity, rash, 40% ability to react with other drugs compared to Rifampin. May be affected by other drugs
Common Side Effects and Toxicities

• PZA – hyperuricemia, hepatotoxicity, rash, arthralgias, nausea and vomiting
• Strep – nephrotoxic, VIII CN damage (ototoxic, hearing and vestibular)
• EMB – retrobulbar neuritis (decreased visual acuity (Snellen) and/or decreased red-green color discrimination (Ishihara), rash

Common Side Effects and Toxicities cont.

• Capreomycin – nephrotoxic, VIII CN damage (ototoxic)
• Amikacin/Kanamycin – two closely related drugs, similar toxicities as above, if resistant to one, usually resistant to the other.
• Ethionamide – hepatotoxic, GI distress, hypothyroidism, gynecomastia, acne, hair loss, menstrual irreg., need B6
• Cycloserine – psychosis, personality changes, rash, convulsions
• PAS – GI distress, hypersensitivity, sodium load, hepatotoxic, bleeding, hypothyroidism
Common Side Effects and Toxicities cont.

- Clofazimine – pink/red discoloration of skin/body fluids, GI, photosensitivity
- Moxifloxacin, Levofloxacin – GI upset, hypersensitivity, rash, dizziness, psychosis, agitation
- Augmentin – diarrhea and abd pain most common, hypersensitivity/rash, n/v
- Linezolid – myelosuppression, diarrhea, nausea and optic neuritis and peripheral neuropathy, expensive, B6

Case study 57yo cauc male

- S+C+, infiltrate RUL and apex, susceptible organism
- Tobacco 2ppd, hx. of daily alcohol use
- Baseline LFT’s normal
- 2-15-07 IRZE initiated
- 3-19-07 AST 362, ALT 380, T.bili 0.6, Serology negative for Hepatitis A, B & C
- 3-20-07 INH held, PZA discontinued due to hepatotoxicity and Moxi was added to R and E.
- 4-17-07 Moxi discontinued due to Abd pain and severe diarrhea (neg for C.diff), Rif and EMB cont.
- 4-23-07 AST 30, ALT 26
- 5-2-07 “all meds” held due to cont. abd pain and diarrhea
- 5-3-07 WBC’s 15.8, neutrophils 84, uric acid 18 (8), AST 99, ALT 66, patient hospitalized for acute abdomen and diagnosed with pancreatitis
57yo cauc male continued

- 5-7-07 discharged from the hospital with rifampin alleged to be the culprit.
- 5-16-08 AST 21, ALT 24, amylase 194(99), lipase 204(59), CBC normal
- 5-22-07 AST 20, ALT 17, amylase 107, lipase 92
- 5-23-07 INH reattempted x1 dose → N, V, and diarrhea → held
- ~5-26-07 EMB tried and after 10 days → diarrhea and abd pain → held, On no meds again
- Recommended GI consult to r/o hepatobiliary disorder- pt. refused.
- Heartland concurred with GI consult and stated patient would be ideal candidate to hospitalize until an effective regimen could be established- pt refused due to financial concerns.
- 6-18-07 AST 19, ALT 8, amylase 44, lipase 24
- 7-19-07 rifabutin and moxifloxacin was finally established and discontinued after 364 doses on 7-17-08.

57yo cauc male continued

- After one month of effective therapy it took almost 4 months to reestablish effective therapy.
- LFT’s and amylase, lipase q2wks for several months then monthly for remainder of therapy- all were normal
- Questions are:
 Did pt have pancreatitis before initiation of therapy or was it due to alcohol or the combination of alcohol and TB meds?
 Was it really the Rifampin? (Took Rifabutin for a year with no problems)
 Never was rechallenged with Rifampin.
References

- MMWR Treatment of Tuberculosis, 6-20-2003/vol.52/No.RR-11
- MMWR Targeted Tuberculin Testing and Treatment of Latent Tuberculosis Infection, 6-9-2000/Vol.49/No.RR-6
- Heartland National TB Center, Tuberculosis Core References for Clinicians
- Jamey “Todd” Braun RN, BSN, MPH, NMDH, Recognizing and Responding to Adverse TB Drug Events.ppt