Tuberculosis Updates for Clinicians
San Antonio, Texas
November 13, 2008

Diagnosing Tuberculosis in Pediatric Patients
Kim Connelly Smith, MD, MPH
November 13, 2008

Childhood Tuberculosis
Kim Connelly Smith
MD, MPH
OUTLINE

• Differences of disease in children and adults
• Diagnostic challenges of pediatric TB
• Radiographic findings
• New diagnostic tests & research
• Clinical Cases

Percent Risk of Disease by Age

<table>
<thead>
<tr>
<th>Age at Infection</th>
<th>Risk of Active TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth – 1 year*</td>
<td>43%</td>
</tr>
<tr>
<td>1 – 5 years*</td>
<td>24%</td>
</tr>
<tr>
<td>6 – 10 years*</td>
<td>2%</td>
</tr>
<tr>
<td>11 – 15 years*</td>
<td>16%</td>
</tr>
<tr>
<td>Healthy Adults</td>
<td>5 10% lifetime risk</td>
</tr>
<tr>
<td>HIV Infected Adults+</td>
<td>30-50% lifetime</td>
</tr>
</tbody>
</table>

*Miller, Tuberculosis in Children
Little Brown, Boston, 1963

WHO, 2004

Note: The term “Tuberculosis” is now more commonly referred to as “Tuberculosis” in public health literature. The term “TB” is still commonly used in medical contexts.

Image: Billboard promoting awareness of tuberculosis, emphasizing its curability and preventability. The message reads, “If you are not infected or have a cough, get a medical examination.”
Risk of Progression to TB Disease by Age

<table>
<thead>
<tr>
<th>Age @ primary infection</th>
<th>Risk of Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth - 12 months</td>
<td>Disease 50%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary Dis 30-40%</td>
</tr>
<tr>
<td></td>
<td>Miliary or TBM 10-20%</td>
</tr>
<tr>
<td>1-2 years</td>
<td>Disease 20-25%</td>
</tr>
<tr>
<td></td>
<td>Pulmonary Dis 75%</td>
</tr>
<tr>
<td></td>
<td>Miliary of TBM 2.5%</td>
</tr>
</tbody>
</table>

Marais BJ. *Int J Tuberc Lung Dis* 2004;8:392-402

Differences In Adult and Pediatric TB
Reactivation Disease

- Occurs years after primary infection
- Typical of adult disease
- Occasionally seen in teens
- Often cavitary disease
- High numbers of organisms (AFB +)
- Usually symptomatic and contagious

Primary Disease

- Typical of childhood TB
- Usually not cavitary
- Most common x-ray: pulmonary infiltrate with or without hilar adenopathy
- Low numbers of organisms
 - AFB smears negative in 95% of cases
 - Culture negative in 60% of cases
- Not contagious in children < 12 yrs
- Often asymptomatic (50%)
Radiographic Findings

- Primary TB has variable and often non-specific appearance on imaging
- Lymphadenopathy a key finding
- Sometimes advanced imaging helps when radiographs are suggestive or confusing
Adult TB Disease

- 85% Pulmonary
- 15% Extrapulmonary

Adult Extrapulmonary TB Disease (15%)

- 25% Lymphatic
- 23% Pleural
- 16% GU
- 13% Other
- 10% Bone/Joint
- 9% Miliary
- 4% Meningeal

CDC
Pediatric TB Disease

- Pulmonary: 75%
- Extrapulmonary: 25%

Extrapulmonary TB Disease in Children (25%)

- Lymphatic: 6%
- Bone/Joint: 5%
- Miliary: 14%
- Pleural: 67%
- Meningeal: 14%
- Other: 5%

CDC
Lymphadenopathy Case

Clinical Case
Cervical Lymphadenopathy

- 8 yr old with cervical lymphadenopathy
- **History:**
 - LAN for 3 months
 - PMHx: Healthy
 - BCG vaccine at birth
 - TB skin test 15 mm
- **Physical Exam:**
 - 3 cm anterior cervical LAN
 - 1.5 cm supraclavicular lymphadenopathy
- **CXR:**
 - Hilar LAN, no infiltrates
- Is this TB disease?
- What else could it be?
Hilar & Cervical Lymphadenopathy

Differential Dx
- Tuberculosis
- Non TB mycobacteria (NTM)
- Lymphoma/Leukemia
- HIV
- Other causes

Diagnostic tests
- Biopsy (FNA or surgical for culture and path)
- Interferon \(\gamma \) Blood test for TB infection

Results

- **Fine needle aspirate of node:**
 - Pathology: lymphoma, no TB by culture or microscopy

- **Interferon \(\gamma \) Blood test for TB**
 - Positive
 - Diagnostic for latent TB infection or disease

- **Diagnoses:**
 - LTBI
 - AND
 - Lymphoma

- **Treatment:**
 - Chemotherapy for lymphoma AND
 - INH daily for 9 months for LTBI
 - continued treatment during immunosuppression
Diagnosis for TB in Children

- **Gold Standard** – Positive TB Culture

 OR, Clinical Diagnosis:

- Abnormal CXR, laboratory, or physical examination consistent with TB **AND**

 1 or more of the following:

 - Positive tuberculin skin test
 - Contagious adult source case identified
 - Clinical course consistent with TB disease
 - Improvement on TB therapy

Work Up for TB Disease In Children

Hospitalization Standard if Source Not Known

- **Gastric aspirates**

 - 3 early morning specimens
 - Sample of overnight swallowed pulmonary secretions from stomach

- **Induced sputum**

 - May be worthwhile in children >4 yrs

- **Bronchoalveolar lavage (BAL)**

 - Requires anesthesia, day surgery procedure
 - Single specimen with similar yield to 3 GA’s
 - Consider if pt needs bronch for other reasons

- **When to get CT scans**

- **When to biopsy lymph nodes**
AFB smears and Cultures in Children and Infants

- **AFB smear usually negative**
 - In 95% of patients <12 yrs of age

- **Low yield on TB culture**
 - Only 40% positive in children 1-12 yrs of age with pulmonary TB

- **Infants with pulmonary TB**
 - 60-70% cultures positive
 - Sometimes AFB smear positive
 - Adult source case important

Expected Clinical Course for TB Disease in Children

- **Pulmonary**
 - CXR takes months to improve

- **Hilar lymphadenopathy**
 - May take year or more to regress on x-ray

- **Lymphadenitis**
 - Gets worse before improvement

- **Meningitis**
 - Inflammation increases initially with treatment
 - Steroids important for 1st month
 - Hospitalization for 1st month recommended
Interferon-γ Release Assays (IGRA)
Blood test for TB

- **MTB specific antigens:**
 - Genes in region of difference (RD1) on MTB genome
 - Culture filtrate protein 10 (CFP 10)
 - Early secretory antigen target 6 (ESAT-6)
- **Stimulate T-Cell production of IFN-γ**
- **Diagnosis LTBI &/or disease**
- **Does not cross react with BGC vaccine or most other mycobacteria**
- **Requires:**
 - single medical visit
 - blood collection
 - laboratory equipment and personnel
- **Results in 24 hrs**
- **Little published data in children**

Commercial IGRA Tests

QuantaFERON-TB Gold or In Tube
Company: Cellestis, Australia
FDA approved for adults

- **Method:**
 - Whole blood
 - IFN-γ measured by ELISA reader

T-Spot TB or ELISPOT
Company: Oxford Immunotec, United Kingdom
FDA approved for adults

- **Method:**
 - T-cells separated
 - Spots counted manually or by reader
Meta-analysis of 58 IGRA Studies

- **Sensitivity*** similar
 - IGRA’s & TST 70-88%
- IGRA’s show excellent **Specificity**+
 - IGRA tests 92-97%
 - TST (due to BCG & NTM cross reaction) 66%
- **Pediatric** data insufficient
 - TB diagnosis more difficult in children
 - No Gold standard for LTBI
 - Not enough published data

*Sensitivity in pts with active TB, Cx = Gold standard
+Specificity in healthy low risk patients without TB

Sensitivity of TST vs ELISPOT
693 Children Exposed to Active TB in Gambia

TST positive 32.5%
ELISPOT positive 32.3%
83% agreement Between tests

Recent Pediatric Published Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Tests</th>
<th>Population</th>
<th>Results</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detjen 2007</td>
<td>Germany</td>
<td>T-Spot.TB, Qft-IT, TST</td>
<td>73 Children 4mos-15yrs 28 culture +</td>
<td>Sens 93% Spec 98-100% PPV 96-100%</td>
<td>3 false neg IGRA's in Cx+, TST+</td>
</tr>
<tr>
<td>Ferrara 2006</td>
<td>Italy</td>
<td>T-Spot.TB, Qft-Gold TST</td>
<td>96 Children (6% < 5yrs) 393 total pts 24 disease 11 culture +</td>
<td>More T-Spot + in contacts & dz 32% indet Qft-Gold in <5yr (7/22 children)</td>
<td>3 false NEG IGRA's in Cx+ TST-patients</td>
</tr>
<tr>
<td>Connell 2008</td>
<td>Australia</td>
<td>T-Spot.TB, Qft-IT TST</td>
<td>96 Children 6mos-19yrs 9 clinical TB</td>
<td>Contacts: +TST>5 +IGRA 42-45% Disease: +Qft-IT +T-Spot 8/9 9/9</td>
<td>Contacts: +Tst/-IGRA 1 pts Of 7 TST>15, 3 no BCG hx</td>
</tr>
</tbody>
</table>
Texas Pediatric T-SPOT.TB Study
Compared TST, T-SPOT and Clinical Dx

- Total children: 212
- Excluded: 9
 - Lab error: 2
 - Missing clinical data: 7
- LTBI: 126
- TB disease: 32
 - 19 culture positive
- Negative controls: 87
- Discordance (TST and T-SPOT.TB): 64%
 - More TST positive among BCG vaccinated

Texas Pediatric T-SPOT.TB Study
Cases with Culture + MTB	Controls No Exp Risk, -TST <10	Contacts with +TST > 5mm, no BCG
Total number 152 (table) | 19 | 88 | 45
Percent T Spot+ | 89%* Sensitivity | 6% | 91%
Percent T Spot - | 11% | 94% “Specificity” | 9%
Percent TST + | 84%# Sensitivity | NA | All
Percent TST - | 16% | All | NA

*17/19 T-SPOT.TB positive
#16/19 TST positive
T-SPOT.TB Texas Study

Special Pedi Cases

- Positive T-SPOT in 3 patients with false - TST, disseminated MTB, culture + disease
 - 15 month old with TB meningitis
 - 6 yr old with Miliary & Renal, immunosuppressed
 - 15 yr old with generalized LAN

- Ruled out TB disease in immunosuppressed
 - Bone marrow transplant pt with cavitary pneumonia, TST -, BCG hx, T SPOT -, routine culture grew strep with quick resolution of pneumonia on antibiotics, AFB & final cx -

T-SPOT.TB

Specificity in Children

- Highly specific (98-100% in recent studies)\(^1,2\)
 - Much better than TST
- May confirm/diagnose/or rule out LTBI especially in BCG vaccinated and NTM infected patients

(1) Detjen, et al, CID 2007 1;45(3):322-8
(2) Connell, et al, PLoS ONE 2008 3(7); e2624
IGRA Sensitivity in Children

- Highly sensitive (93-100% in recent studies\(^1,2\))
- False negatives lower than TST
 - Max sensitivity with TST & IGRA’s
 - May be important in highest risk populations such as young child contacts and immunosuppressed
 - Consider using TST or IGRA’s if either positive in high risk for increased sensitivity
 - Unknown: What is the negative predictive value of IGRA’s in TST positive high risk contact?

(1) Detjen, et al, CID 2007 1;45(3):322-8
(2) Connell, et al, PLoS ONE 2008 3(7); e2624

Pediatric TB Case

- 12 month old boy with:
 - 10 days fever (102-105)
 - 4 days of vomiting and irritability
 - Chronic OM with PE tubes since 9 mos of age, no ear discharge at presentation
 - Admitted to hospital for vomiting & treated with IV cephalosporin
Case Presentation, Cont

- Transferred to Medical Center for mastoiditis
 - Routine culture of middle ear negative at 2 days
- Lumbar puncture and CSF on day 2
 - WBC 360, dif 25 P, 67 L, 8 M
 - Protein 210 (normal 15–45)
 - Routine Cx negative at 2 days
- Tuberculin skin test 0 mm
- CXR – normal initially then miliary pattern
- No risk, travel or known exposure to TB
- Brain MRI
 - Multiple enhancing nodules
 - Enhancement of brain stem and basal ganglion
 - Right otomastoiditis
Outcome

- **TB treatment** started for suspected TB meningitis
 - INH, Rifampin (12 months), PZA, EMB & Steroids
- Mother with + TST, normal CXR, no source case identified
- **Middle ear fluid and CSF later grew MTB**
 - Grew > 1 month after presentation
 - Pansusceptible
- Complications & outcome:
 - Hydrocephalous & VP shunt
 - Very mild hemiparesis
 - Cognitively: pos learning disability but doing well
- Note: from research study
 - Interferon γ blood test positive for TB

Tuberculosis Meningitis

- Higher risk in infants
- Gradual onset over days or 1-2 weeks compared to bacterial meningitis
- Cerebral Spinal Fluid (CSF)
 - Normal to moderately high WBC (20’s 100’s), lymphocytic predominance
 - Very high protein, usually >100-300
- MRI
 - Brain stem & basal ganglion enhancement
 - Sometimes no findings on MRI
Tuberculosis Meningitis, cont

Possible complications
- Hydrocephalus
- Stroke/infarcts
- Cognitive impairment
- Normal outcome possible if treated in early stages (50% normal in my experience)

Treatment
- 4 TB meds until susceptibilities known
- Total treatment for 12 months
- Steroids (1-2 months) to decrease inflammation and scar formation
- Symptoms often get worse before better, many treat in hospital for first month

Summary
Challenges of TB in Children
- More difficult diagnosis
- Nonspecific signs and symptoms
- Fewer mycobacteria
- Fewer positive bacteriologic tests
- Increases risk of progression to active disease
- Higher risk of extrapulmonary and TB meningitis
THANKS

- Heartland National TB Center
- Research collaborators:
 - Drs. Jeffrey Starke & Edward Graviss, Baylor College of Medicine, Houston, TX
- Research funding:
 - Oxford Immunotec, Inc, UK