Clinical Relevance of Immunology & Endotypes in TB Andrew DiNardo, MD, PhD

April 1, 2024

New Directions in TB April 1 – 2, 2024 Houston, Texas Andrew DiNardo, MD, PhD has the following disclosures to make:

- No conflict of interests
- No relevant financial relationships with any commercial companies pertaining to this educational activity

Clinical relevance of immunology & endotypes in TB

April Fools 2024 New Directions in TB Conference

Andrew DiNardo, MD PhD Baylor College of Medicine Radboud UMC Assistant Professor Infectious Diseases

Clinical relevance Immunology & Endotypes

- TB diagnosis
- TB "in-treatment" outcomes
- Post-TB Cardiovascular Disease (3x 个risk)
- Post-TB Cancer (~2x 个risk)
- Post TB lung morbidity (15-80% of TB patients suffer)

So how do we solve the problem?

What is the singular immune modulation we can do to improve long-term TB outcomes?

Summary

- There is no single immune correlate of protection
 →multiple TB endotypes
- Pathology can be driven by:
 - 1. Pathogen induced pathology
 - 2. Immune induced pathology (inflammation)
 - 3. Anergy (immune suppressed) induced pathology

The Virchow-Koch skirmish

1891: Early HDT failure

NEJM 1891

VIRCHOW ON THE EFFECTS OF KOCH'S METHOD.¹

AT the Berlin Medical Society on January 7th, Professor Virchow exhibited specimens from twentyone patients treated by Koch's method who died before January 1st. Since then six or seven more necropsies had been made by him and specimens from these were also shown. Of the former series, sixteen were cases of phthisis.

Professor Virchow illustrated the irritating effects of the fluid by the specimen of a brain removed from a child with tuberculous arachnitis, who died after four injections of the lymph amounting in all to two milligrammes. There was intense hyperæmia of the brain and pia mater such as Professor Virchow had never before seen. The vessels of the pia were extremely engorged and the brain-substance internally was of a dusky-red tint. The speaker could not see any signs of retrogressive metamorphosis of the tubercles. Acute hyperæmia and swelling were also seen in the internal organs of other cases. The walls of old cavities in the lungs showed unusual

¹ Modical News, January 17, 1891.

1891 lessons:

- 1. Tubercululin induced pathologic IRIS
- 2. One size doesn't fit all

NEJM 1891

by the injections of the lympth.

The most important effect observed, however, was an eruption of fresh crops of tubercles after the injections. This occurs especially in the pleura, pericardium, and peritoneum, and Virchow says that in the case of

Tuberculin: induced IRIS

body by infection with the products of disintegration.
Virchow, therefore, urges the greatest caution in the use of the remedy. While admitting that in many cases the lymph does produce the effects claimed for it, he points out that this result is not constant, and he cites cases in which large masses of tubercle were entirely unaffected by injections. He also showed

No one-sized fits all approach

· | out the whole extent of the larynx and trachea.

On January 14th, before the Berlin Medical Association, Professor Virchow resumed his lecture on the subject of cases which have resulted fatally after the inoculations of the Koch remedy. He said that he was not prejudiced against the remedy; he simply wished to give warning regarding its too general application. In the discussion which followed, Professors Frænkel and Baginsky spoke in support of Professor Virchow's contention that tubercular disease

What is the "right" immune response to TB?

IFN- γ improves in vitro *Mtb* killing

INFECTION AND IMMUNITY, Aug. 1976, p. 337-344 Copyright © 1976 American Society for Microbiology

Vol. 14, No. 2 Printed in U.S.A.

Partial Characterization of a Factor Extracted from Sensitized Lymphocytes That Inhibits the Growth of Mycobacterium tuberculosis Within Macrophages In Vitro

R. TURCOTTE,* Y. DES ORMEAUX, AND A. G. BORDUAS

Centre de Recherche en Immunologie, Institut Armand-Frappier, C.P. 100, Laval-des-Rapides, Ville de Laval, Québec, Canada H7N 4Z3

Received for publication 4 March 1976

Immune correlates of Protection #1: IL12-IFNγ pathway

Upstream MSMDs

- Mutations in *IL12B, IL12RB1, IRF8, NEMO*
- $\downarrow \mathsf{IFN} \gamma$
- ↓ killing capacity

Downstream MSMDs

- Mutations in IFNGR1, IFNGR2, STAT1, IRF8
- \uparrow IFN γ
- ↓ killing capacity

IFN-γ improves in vitro *Mtb* killing Recruits additional immune cells

IDENTIFICATION OF INTERFERON-γ AS THE LYMPHOKINE THAT ACTIVATES HUMAN MACROPHAGE OXIDATIVE METABOLISM AND ANTIMICROBIAL ACTIVITY*

BY CARL F. NATHAN,[‡]HENRY W. MURRAY,[§]MICHAEL E. WIEBE, and BERISH Y. RUBIN

> J. EXP. MED. © The Rockefeller University Press · 0022-1007/83/09/0670/20 \$1.00 Volume 158 September 1983 670-689

- 1. ↑P-L maturation
- 2. Warburg metabolism
- 3. ROS upregulation
- 4. Ag processing
- 5. Chemokine activation
- \rightarrow IFN- γ mediates killing of intracellular pathogens

and

 \rightarrow Attracts additional immune cells

IFN- γ : fatal immune pathology

CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1– Mediated Inhibition

Daniel L. Barber, Katrin D. Mayer-Barber, Carl G. Feng, Arlene H. Sharpe and Alan Sher

Inhibit PD1 \rightarrow \uparrow IFN γ

TNF improves in vitro *Mtb* killing Recruits additional immune cells

Proc. Nat. Acad. Sct. USA Vol. 72, No. 9, pp. 3666–3670, September 1975 Immunology

An endotoxin-induced serum factor that causes necrosis of tumors

(activated macrophage)

E. A. CARSWELL, L. J. OLD, R. L. KASSEL, S. GREEN, N. FIORE, AND B. WILLIAMSON

Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021

Communicated by Lewis Thomas, June 23, 1975

572, June, 1995, Copyright © 1995 by Cell Press

Tumor Necrosis Factor-α Is Required in the Protective Immune Response Against Mycobacterium tuberculosis in Mice

JoAnne L. Flynn,¹ Marsha M. Goldstein,² John Chan,³ Karla J. Triebold,⁴ Klaus Pfeffer^{5, 6}, Charles J. Lowenstein,⁷ Robert Schreiber,⁸ Tak W. Mak,⁵ and Barry R. Bloom⁴

TNF improves in vitro *Mtb* killing Recruits additional immune cells

Proc. Nat. Acad. Sci. USA Vol. 72, No. 9, pp. 3666–3670, September 1975 Immunology
An endotoxin-induced serum factor that causes necrosis of tumor (activated macrophage)
E. A. Carswell, L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson
Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021
Communicated by Lewis Thomas, June 23, 1975

Immunity, Vol. 2, 561-572, June, 1995, Copyright © 1995 by Cell Press

Tumor Necrosis Factor-α Is Required in the Protective Immune Response Against Mycobacterium tuberculosis in Mice

JoAnne L. Flynn,¹ Marsha M. Goldstein,² John Chan,³ Karla J. Triebold,⁴ Klaus Pfeffer^{5, 6}, Charles J. Lowenstein,⁷ Robert Schreiber,⁸ Tak W. Mak,⁵ and Barry R. Bloom⁴

- . Granuloma formation
- 2. Reactive nitrogen production
- 8. Nitric oxide production
- L. Chemokine production
- 5. Apoptosis / autophagy / necroptosis
- → ↑ killing of intracellular pathogens and
- \rightarrow Attracts additional immune cells

More is better?

More IFN γ or TNF α prevents TB?

Immune induced pathology & death

CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition

Daniel L. Barber,* Katrin D. Mayer-Barber,* Carl G. Feng,* Arlene H. Sharpe,[†] and Alan Sher*

SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

IMMUNOTHERAPY

PD-1 blockade exacerbates *Mycobacterium tuberculosis* infection in rhesus macaques

Keith D. Kauffman¹, Shunsuke Sakai¹, Nickiana E. Lora¹, Sivaranjani Namasivayam², Paul J. Baker³, Olena Kamenyeva⁴, Taylor W. Foreman¹, Christine E. Nelson¹, Deivide Oliveira-de-Souza⁵, Caian L. Vinhaes⁵, Ziv Yaniv⁶, Cecilia S. Lindestam Arleham⁷, Alessandro Sette^{7,8}, Gordon J. Freeman⁹, Rashida Moore¹⁰, NIAID/DIR Tuberculosis Imaging Program^{*}, Alan Sher², Katrin D. Mayer-Barber³, Bruno B. Andrade⁵, Juraj Kabat⁴, Laura E. Via^{11*}, Daniel L. Barber^{1†}

BRIEF DEFINITIVE REPORT

Irg1 expression in myeloid cells prevents immunopathology during *M. tuberculosis* infection

Sharmila Nair¹*, Jeremy P. Huynh²*, Vicky Lampropoulou³, Ekaterina Loginicheva³, Ekaterina Esaulova^{3,4}, Anshu P. Gounder², Adrianus C.M. Boon^{1,2,3}, Elizabeth A. Schwarzkopf³, Tara R. Bradstreet³, Brian T. Edelson³, Maxim N. Artyomov³, Christina L. Stallings², and Michael S. Diamond^{1,2,3,5}

Clinical trial of aerosolized IFN- γ in MDR TB halted early due to increased death (10 vs 5 deaths)

Dawson R, Condos R, Tse D, et al. Immunomodulation with recombinant IFN- γ in pulmonary tuberculosis. PLoS One 2009; 4:e6984.

Narrow therapeutic immune window

How do we make this clinically applicable?

When does TB therapy need an immune boost?

When does pathologic inflammation need to be suppressed?

Even more complicated...

An existing examples

Endotypes: Different Diseases With Different Causes

Another example:

33 yr presents with 3 weeks of fatigue and cough.

Found to have Hg of 8, PLT 30, and WBC 110

Acute myelogenous leukemia seen on cytology.

What is the treatment?

Pre- endotype identification Leukemia Rx (2017)

-MRC, AML with myelodysplasia-related change

AML, therapy-related AML, GO, gemtuzumab ozogami

Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML

ESTABLISHED IN 1812

AUGUST 13, 2020

VOL. 383 NO. 7

Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia

Post endotype identification Leukemia Rx (2020)

wic, therapy-related xwic, 60, gentuzuniab uzugamicin.

hard-Carpentier G, DiNardo CD. Hematology Am Soc Hematol Educ Program. 2019;2019:548-556

External drivers

Randomized control trials

Evidence for TB endotypes:

Discovery

7 public studies (microarray)

435 TB patients 533 healthy controls

RF gene classifier

- Data mined 9 TB studies from 7 different countries
- 435 TB cases & 533 healthy controls
- Unbiased Seurat clustering
- 2-4 different TB endotypes identified

Evidence for TB endotypes:

Discovery

7 public studies (microarray)

435 TB patients 533 healthy controls

TB endotypes

2 public studies

Validation

Borstel cohort (microarray)

Biological exploration

40 TB patients

- Validated w 2 unique RNAseq datasets
- Validated with German/ Romanian cohort
- Validated with Eswatini immunology cohort
- Linked to data base of HDT drugs

TB endotypes: different molecular pathologies that can lead to similar disease phenotypes

Pathways

TCC

to potential drug treatments

8

3-2-53

- Lowest resolution: 2 endotypes
- Endotype A: hyperinflammatory & hyporesponsive; slower time to culture conversion

TB endotypes: different molecular pathologies that can lead to similar disease phenotypes

HDT predicted to be beneficial for one endotype either inconsequential or detrimental for other endotype

Next steps for improving endotype-specific TB care

Long term good outcomes likely require:

- 1. Eradicating *Mtb* organisms
- 2. Reducing pathologic inflammation
- 3. Restoring immune responsiveness

TCGA: The Cancer Genome Atlas

- NIH run database including:
 - RNA-seq
 - Proteomics
 - Epigenomics
 - Metabolomics
 - All linked to long-term clinical outcomes
 - All data publicly available with rich meta-data
- >11,000 Cancer patients
- >15,000 publications
- Hundreds of new therapies \rightarrow improved clinical outcomes!

A Texas TB-equivalent to the TCGA?

- Linking long-term clinical outcomes (M&M)
 - Mortality
 - Lung function
 - Cardiovascular disease
 - Microbiology
 - Banked samples

A Texas solution that can transform TB clinical care in the next decade?

Thank you...

