"I would like to order an MDDR with a side of MIC and WGS. What is your traditional DST today?" Benjamin Alpers & Jan Owen

April 2, 2024

New Directions in TB April 1 – 2, 2024 Houston, Texas

Benjamin Alpers has the following disclosures to make:

- No conflict of interests
- No relevant financial relationships with any commercial companies pertaining to this educational activity

Jan Owen has the following disclosures to make:

- No conflict of interests
- No relevant financial relationships with any commercial companies pertaining to this educational activity

TEXAS Health and Human Services

"I would like to order an MDDR with a side of MIC and WGS. What is your traditional DST today?"

or

Making Sense of the TB Diagnostic Menu

Benjamin Alpers, Applications Scientist/TB Reference Team Lead Jan Owen, Mycobacteriology/Mycology Branch Manager DSHS Austin Laboratory

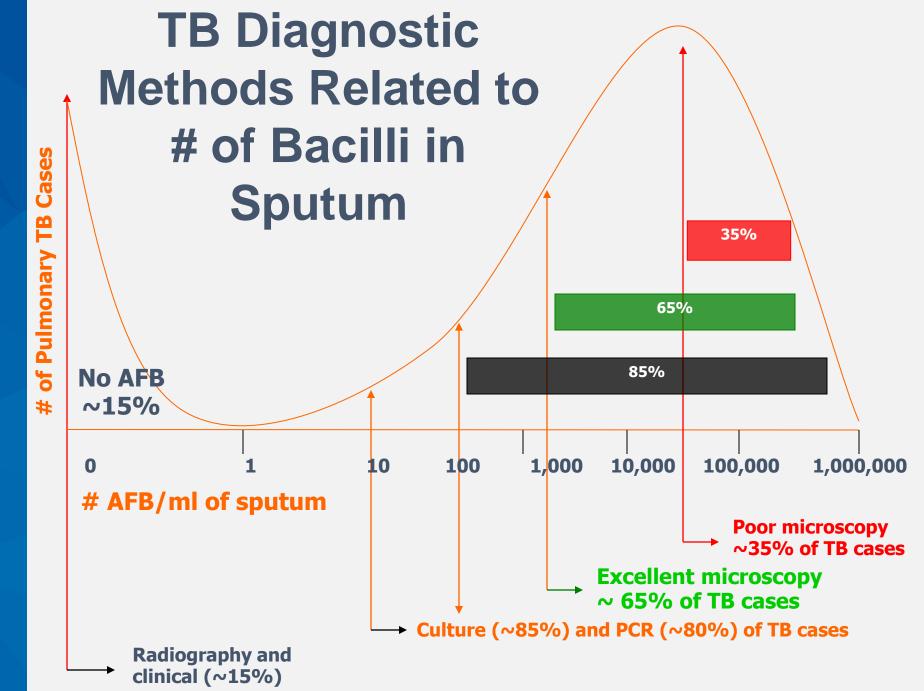
Ben Alpers and Jan Owen have the following disclosures to make:

No conflict of interests

• No relevant financial relationships with any commercial companies pertaining to this educational activity

AFB Smear

- Used in diagnosis for 100+ years
- Rapid and universally available
 - We strive for 24hr TAT
- Identifies priority specimens for NAAT
 - 5,000 to 10,000 AFB/ml must be present in specimen to be detected in smear
- Not sensitive
 - Misses ~50% of TB
- Not specific
 - Positive smear may be NTM
- Can detect dead bacilli



AFB Culture

More sensitive than smear

- ~10 viable AFB/ml for culture
- Positive for ~85% of Pulmonary TB
 - Requires a quality specimen
 - May be invalid due to contamination
- Used to monitor patient response to treatment (like smear)
- Required for conventional drug susceptibilities & genotype
- Lengthy
 - 1-6 weeks by liquid media
 - 2-8 weeks by solid media

TEXAS Health and Human Services

Texas Department of State Health Services

Adapted from Priorities for TB Bacteriology Services in Low-Income Countries, 2007, IUATLD

Nucleic Acid Amplification Tests (NAAT)

- Real time reverse transcription polymerase chain reaction (qRT-PCR or qPCR)
- Tiny amounts of DNA/RNA amplified (copied) until a significant signal compared to the background
- GeneXpert examines DNA for:
 - Identification
 - Detection of Rifampin Resistance
- Test turnaround time measured in hours

Nucleic Acid Amplification Tests (NAAT) cont.

- Detects M. tuberculosis complex nucleic acids
 - For initial diagnostic specimens only
 - Does not distinguish between live and dead bacilli
 - Not suitable for follow-up specimen or monitoring; cured patients may be NAAT + for years!
- Xpert sensitivity compared to TB culture
 - >95% for AFB smear-positive
 - Only 55-75% for AFB smear-negative

Cepheid GeneXpert® Target Region

5 - GCACCAGCCAGCTGAGCCAATTCATGGACCAGAACAACCCGCTGTCGGGGTTGACCCACAAGCGCCGACTGTCGGCGCTG - 3

3 - CGTGGTCGGTCGACTCGGTTAAGTACCTGGTCTTGTTGGGCGACAGCCCCAACTGGGTGTTCGCGGCTGACAGCCGCGAC - 5

The MTB assay target is the 81 bp rifampin resistance determination region of the rpoB gene.

A

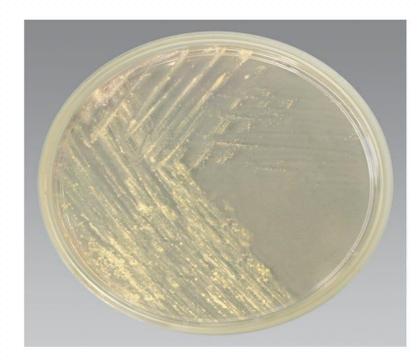
Texas Department of State Health Services Approx. 10% of rifampin resistant predictions are false
(ex. Phe433Phe silent mutation)
GX rifampin resistant results must be confirmed by
MDDR testing at the CDC.

Methods for Culture ID

- Lab-developed, species-specific PCR tests
- Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF or MALDI)
- High-performance liquid chromatography (HPLC)

Pro and Cons of ID Methods

- PCR highly sensitive but costly
 - Can only ID organism for which the assay was developed
- MALDI very specific
 - Can identify extremely wide range of organisms
 - Relatively poor sensitivity; requires substantial growth
- HPLC sensitive, inexpensive, and non-labor intensive
 - Chromatographs require highly trained interpretation
 - Often cannot distinguish organisms within complex or group


M. tb cx. Speciation through Real-Time Polymerase Chain Reaction (PCR)

inherently

PZA resistant

Can differentiate between species within the complex using 5 sets of probes and primers targeting known regions of difference (RD)

- M. tuberculosis
- M. bovis
- *M. bovis* BCG and
- M. africanum
- M. microti
- M. canettii
- *M. caprae* ...and others

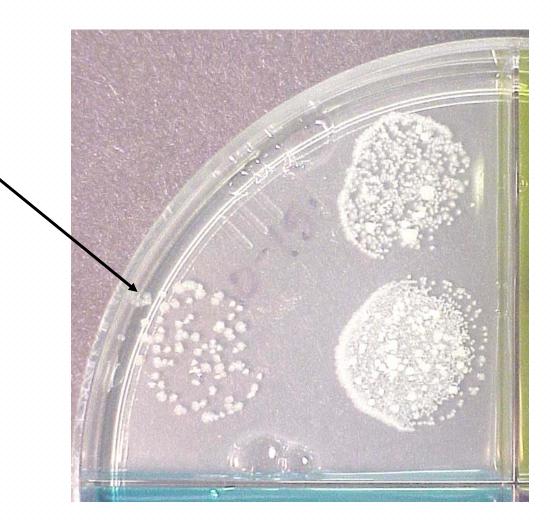
Conventional, Growth-based Drug Susceptibility Testing (DST)

MGIT 960 method

- Automated
- Widely available
- Poor accuracy
- Easily contaminated

Agar Proportion method

- Highly sensitive
- Inexpensive production
- Interpretation requires extensive experience



Agar Proportion (AP) DST Method Principle

- Standardized suspension inoculated to quadrant plates
 - Drug-containing Middlebrook 7H10 agar
 - Drug-free control
- Drug no longer counted on as being effective if:
 - Growth of on drug quadrant is 1% or greater than the growth on the control

100cfu/100cfu = 100% Resistance

Isoniazid, 1.0 mcg/ml

-1-

Drug-Free Control

Additional Considerations

- CDC recommends RMP DST results be reported within 17 days after *M. tuberculosis* culture identification
- Most U.S. laboratories use a rapid commercial system for DST (MGIT 960)
- Commercial DST methods miss some clinically significant RMP resistance that can be detected by agar proportion
- Agar Proportion (AP) is the "gold standard" method for conventional DST...however AP is not a rapid method; conventional AP method takes 21 days (3 weeks) for full results
- DSHS regularly reports INH & RMP susceptibility within 17 days of culture identification
- PZA testing can only be performed by MGIT 960 method

Minimum Inhibitory Concentration (MIC)

- Lowest concentration of a drug which prevents detectable in vitro growth when tested in a series of concentrations
- Only available at specialized laboratories such as CAHD and Wadsworth Center NYHD
- Performed only by special request on select antibiotics
- Tested by MGIT, AP, or Broth Micro-dilution (BMD)

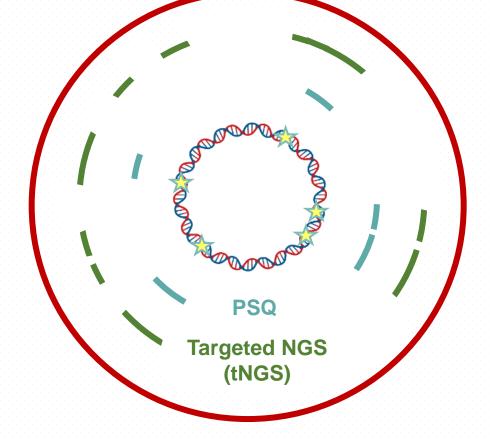
Types of Molecular Sequencing

Required DNA Volume

Pyrosequencing (PSQ)

Sanger Sequencing

Targeted Next Generation Sequencing (tNGS)


Whole Genome Sequencing (WGS)

Molecular methods of resistance detection: difference in purview

Texas Department of State Health Services

Whole Genome Sequencing (WGS)

Adapted from Whole Genome Sequencing for TB Drug Resistance at the TB DST Reference Center, 2024, APHL

Pyrosequencing

- Highly sensitive
- Amplifies short sequences of base pairs
- Quick turnaround (3-5 days)
- Can be performed on PCR+ sediment with very low smears
- CAHD uses if WGS unobtainable (sediment or mixed culture)
- Wadsworth tests new patient PCR+ and to confirm primary or fluroquinolone resistance

Sanger Sequencing

- Requires ~10x more DNA than pyrosequencing
- Amplifies longer sequences
- Turnaround (5-7 days)
- Can be performed on PCR+ sediment with low smear count
- CDC sequences *rpoB* if tNGS fails or delayed
- Wadsworth sequences *pncA* (PZA) by this method

tNGS Sequencing

- Requires slightly more DNA than Sanger
- Amplifies longer and more sequences
- Turnaround 7-10 days
- Can be performed on PCR+ sediment with smear positivity of at least 1-10/field
- Can detect subpopulations as low as 10%
- Primary CDC sequencing scheme
- CAHD plans to bring online in near future
- FLHD currently performs

Genetic Loci Sequenced through tNGS MDDR (CDC)

Genetic Locus

RRDR within the *rpoB* gene with the addition of two codons outside of the RRDR inhA, katG, fabG1 embB pncA gyrA, gyrB rrs eis

Associated Drug

Rifampin (RMP)

Isoniazid (INH) Ethambutol (EMB) Pyrazinamide (PZA) Fluoroquinolones Amikacin Capreomycin Kanamycin Kanamycin

Additional Genetic Loci Sequenced through tNGS

Genetic Locus

atpE rv0678 pepQ

rv0678 pepQ

rplC rrl (partial) Bedaquiline

Associated Drug

Clofazimine

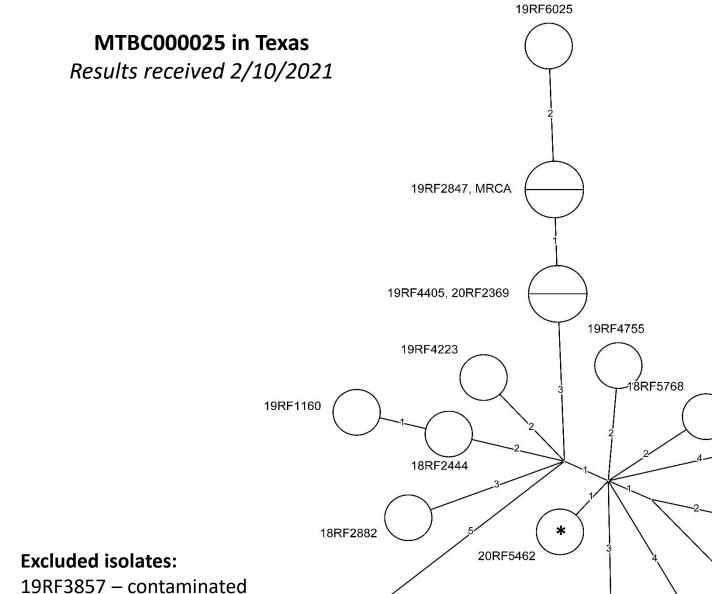
Linezolid

Texas Department of State

Health Services

WGS Sequencing

- Requires culture (sediment cannot amplify)
- Sequences practically entire genome
- Turnaround 12-16 days
- All major laboratories perform (CA, NY, FL, TX, CDC)
- Can be used for both DST and TB species ID
- Extremely helpful for epidemiological investigation



TB WGS-DST targets (CAHD)

Red text- new targets in WGS not covered by PSQ

	Drug	PSQ loci	Added WGS loci
1 st line	Isoniazid	katG, fabG1/inhA, ahpC	= PSQ* - ahpC
	Rifampicin	гроВ	$= PSQ^*$
	Pyrazinamide	pncA (M. bovis ID only)	= PSQ* + pncA (PZA R)
	Ethambutol	-	embA, embB
2 nd line	Amikacin/Kanamycin	rrs	= PSQ* + <mark>eis</mark>
	Capreomycin	rrs	$= PSQ^* + tlyA$
	Fluoroquinolones	gyrA	= PSQ* + gyrB
	Ethionamide	fabG1/inhA	= PSQ* + ethA
Other	Bedaquiline	-	Rv0678 (mmpR), pepQ, atpE, mmpL5, mmpS5
	Clofazimine	-	Rv0678 (mmpR), pepQ, atpE, mmpL5, mmpS5
	Linezolid	-	rplC, rrl
MTBC ID confirmation		Yes	Yes

*For targets included in PSQ, the genomic ranges covered in WGS DST assay are broader and include FL genes & promoter regions (with some exceptions for reporting ranges).

18RF6663

*Isolates denoted with an asterisk are from the same patient. Isolate 20RF5462 was collected from a sputum specimen and 20RF5776 was collected from a urine sample.

Analysis updated with

20RF5776 and 20RF5462

(isolates from the same patient)

19RF2304

20RF4090

*

19RF4067

20RF5776

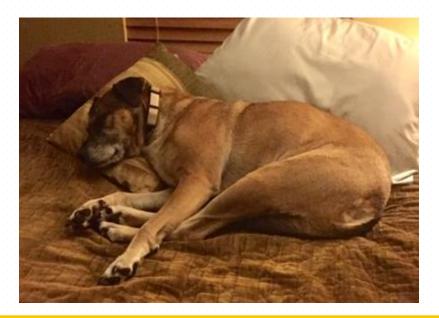
18RF5286

18RF1535

18RF6976 – contaminated 18RF6084 – contaminated

18RF4713 – contaminated

18RF3636 – low sequence coverage


Additional DST

- Very few laboratories perform conventional testing on the newer antibiotics
- Molecular targets typically relied upon
- Wadsworth will report clinical breakpoint results for bedaquiline (1.0 μg/mL), clofazimine (1.0 μg/mL), and linezolid (1.0 μg/mL) by MGIT 960
- Can also perform MICs

Thank you!

jan.owen@dshs.texas.gov benjamin.alpers@dshs.texas.gov

