

Treatment of Tuberculosis

Lisa Y. Armitige, MD, PhD July 16, 2024

TB Intensive
July 16 – 18, 2024
San Antonio, Texas

Lisa Y. Armitige, MD, PhD has the following disclosures to make:

 No relevant financial relationships with any commercial companies pertaining to this educational activity

Treatment of Tuberculosis

Lisa Y. Armitige, MD, PhD
Co-Medical Director
Heartland National TB Center

Professor of Medicine and Pediatrics University of Texas HSC at Tyler Clinical Infectious Diseases

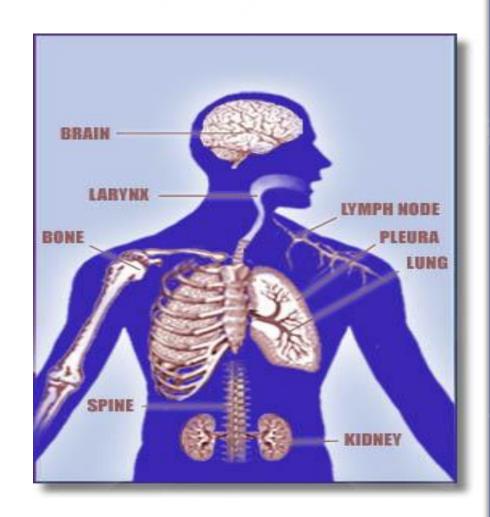
IDSA GUIDELINE

Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children

David M. Lewinsohn, ^{1,a} Michael K. Leonard, ^{2,a} Philip A. LoBue, ^{3,a} David L. Cohn, ⁴ Charles L. Daley, ⁵ Ed Desmond, ⁶ Joseph Keane, ⁷ Deborah A. Lewinsohn, ¹ Ann M. Loeffler, ⁸ Gerald H. Mazurek, ³ Richard J. O'Brien, ⁹ Madhukar Pai, ¹⁰ Luca Richeldi, ¹¹ Max Salfinger, ¹² Thomas M. Shinnick, ³ Timothy R. Sterling, ¹³ David M. Warshauer, ¹⁴ and Gail L. Woods ¹⁵

¹Oregon Health & Science University, Portland, Oregon, ²Emory University School of Medicine and ³Centers for Disease Control and Prevention, Atlanta, Georgia, ⁴Denver Public Health Department, Denver, Colorado, ⁵National Jewish Health and the University of Colorado Denver, and ⁶California Department of Public Health, Richmond; ⁷St James's Hospital, Dublin, Ireland; ⁸Francis J. Curry International TB Center, San Francisco, California; ⁹Foundation for Innovative New Diagnostics, Geneva, Switzerland; ¹⁰McGill University and McGill International TB Centre, Montreal, Canada; ¹¹University of Southampton, United Kingdom; ¹²National Jewish Health, Denver, Colorado, ¹³Vanderbilt University School of Medicine, Vanderbilt Institute for Global Health, Nashville, Tennessee, ¹⁴Wisconsin State Laboratory of Hygiene, Madison, and ¹⁵University of Arkansas for Medical Sciences, Little Rock

Diagnosing Tuberculosis


Sites of TB Disease

• Lungs

Extrapulmonary:

- Larynx
- Pleural effusion
- Kidneys
- Lymphatics
- Bones & joints
- Miliary (disseminated)

Signs & Symptoms Pulmonary TB

Pulmonary Symptoms:

- Productive prolonged cough of over 3 weeks duration
- Chest pain
- Hemoptysis

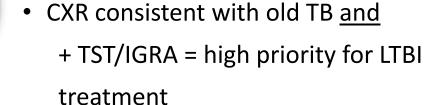
Systemic Symptoms:

- Fever
- Chills
- Night sweats
- Appetite loss
- Weight loss
- Easy fatigability

Evaluation for TB

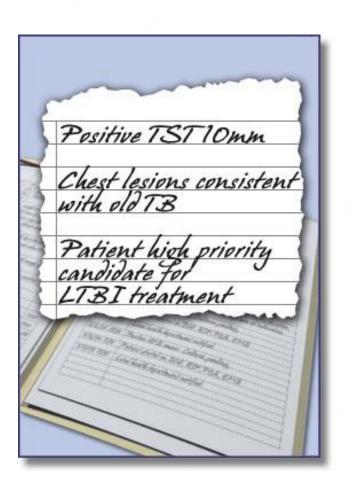
- Medical history
- Physical examination
- Testing for TB infection
- Chest radiograph
- Bacteriologic or histologic exam

No CXR study shows findings specific for TB


Cavitary process are more likely to be TB

Common mimics of TB =

- Non-tuberculous mycobacteria (NTM)
- fungal infection
- bacterial abscesses
- necrotic neoplasm (especially lung neoplasm)


CXR – old healed TB

 Nodules & fibrotic lesions may contain slowly multiplying bacilli = potential for progression

Calcified nodular lesions (calcified granuloma) pose a very low risk for future progression

CXR - special situations

 Pregnant persons who are highly suspected of having TB and are being evaluated for active disease should undergo a CXR without delay, even during the first trimester

 Patients suspected of extrapulmonary TB should have a CXR to R/O pulmonary TB

Yes! You can X-ray a pregnant patient!

ACOG COMMITTEE OPINION

Number 723 • October 2017

(Replaces Committee Opinion Number 656, February 2016)

Committee on Obstetric Practice

This document is endorsed by the American College of Radiology and the American Institute of Ultrasound in Medicine. This Committee Opinion was developed by the American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Member contributors included Joshua Copel, MD; Yasser El-Sayed, MD; R. Phillips Heine, MD; and Kurt R. Wharton, MD. This document reflects emerging clinical and scientific advances as of the date issued and is subject to change. The information should not be construed as dictating an exclusive course of treatment or procedure to be followed.

Table 2. Effects of Gestational Age and Radiation Dose on Radiation-Induced Teratogenesis (=

Gestational Period	Effects	Estimated Threshold Dose*	
Before implantation (0–2 weeks after fertilization)	Death of embryo or no consequence (all or none)	50–100 mGy	
Organogenesis (2–8 weeks after fertilization)	Congenital anomalies (skeleton, eyes, genitals)	200 mGy	
	Growth restriction	200-250 mGy	
Fetal period	Effects	Estimated Threshold Dose*	
8–15 weeks	Severe intellectual disability (high risk) [†]	60-310 mGy	
	Intellectual deficit	25 IQ-point loss per 1,000 mGy	
	Migragaphaly	200 mGv	
	Microcephaly	200 1110	

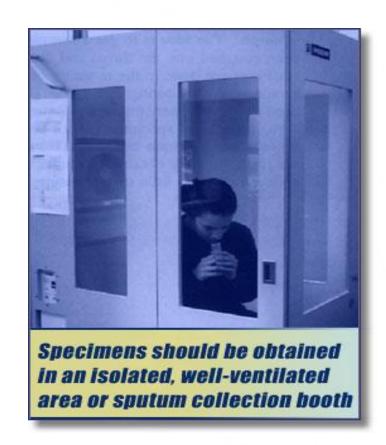
exposed to radiation for medical reasons (eg, radiation therapy for carcinoma of the uterus).

Modified from Patel SJ, Reede DL, Katz DS, Subramaniam R, Amorosa JK, Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics 2007;27:1705-22.

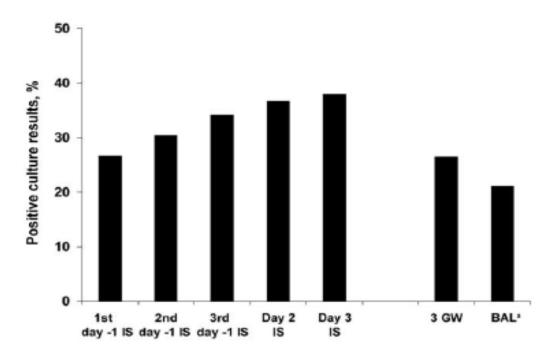
Table 3. Fetal Radiation Doses Associated With Common Radiologic Examinations \Leftarrow

Type of Examination	Fetal Dose* (mGy)
Very low-dose examinations (<0.1 mGy)	
Cervical spine radiography (anteroposterior and lateral views)	<0.001
Head or neck CT	0.001-0.01
Radiography of any extremity	<0.001
Mammography (two views)	0.001-0.01
Chest radiography (two views)	0.0005-0.01
Low- to moderate-dose examinations (0.1–10 mGy)	
Radiography	
Abdominal radiography	0.1-3.0
Lumbar spine radiography	1.0-10
Intravenous pyelography	5–10
Double-contrast barium enema	1.0-20
СТ	
Chest CT or CT pulmonary angiography	0.01-0.66
Limited CT pelvimetry (single axial section through the femoral heads)	<1
Nuclear medicine	
Low-dose perfusion scintigraphy	0.1-0.5
Technetium-99m bone scintigraphy	4–5
Pulmonary digital subtraction angiography	0.5
Higher-dose examinations (10–50 mGy)	
Abdominal CT	1.3–35
Pelvic CT	10-50
¹⁸ F PET/CT whole-body scintigraphy	10-50

[†]Because this is a period of rapid neuronal development and migration.


Bacteriologic and Histologic Examinations

When lung or larynx is site of disease:


• 3 sputum specimens for AFB smear and culture

Collected 8-24 hours apart
 with at least 1 early morning specimen

Culture Yield

Figure 2. Proportion of subjects with cultures positive for *Mycobacterium tuberculosis*, by diagnostic technique, for 79 subjects with results for all 5 sputum samples obtained by induction with nebulized hypertonic saline (IS) and all 3 gastric washing (GW) specimens. Cumulative proportions are shown for the 5 IS samples. P = .25, by paired binomial probability test comparing diagnostic yield of all 5 IS samples versus 3 day 1 IS samples. *Bronchoalveolar lavage (BAL) culture results were available for 19 subjects.

Bacteriologic and Histologic Examinations

Extrapulmonary Specimens

- Urine
- Cerebrospinal fluid *
- Pleural fluid *
- Pus
- Biopsy specimens

Do NOT collect specimens in Formalin or bacteriostatic saline!

*recovery poor

Laboratory Examination

• AFB smear

• AFB culture

- Nucleic acid amplification test (NAAT)
 - GeneXpert
 - Molecular Detection of Drug Resistance (MDDR)

Treatment of Tuberculosis

Treatment of Culture-Positive Drug Susceptible Pulmonary TB

General conclusions from the literature

- 6 mo (26 wk) is the MINIMUM duration of Rx
- 6 mo regimens require rifampin throughout and PZA for the first 2 months
- 6 mo regimens are effective without INH
- Intermittent regimens (2-3x/wk):
 - GIVEN by DOT ONLY
 - Drug susceptible isolate
 - Regimen contains INH and rifampin

Antituberculosis Drugs (ATS/CDC/IDSA)

- First-Line drugs (RIPE)
 - Isoniazid
 - Rifampin
 - Rifapentine
 - Rifabutin*
 - Ethambutol
 - Pyrazinamide
 - *Not FDA approved for TB

- Second-Line Drugs
 - Cylcoserine
 - Ethionamide
 - Levofloxacin*
 - Moxifloxacin*
 - PAS
 - Streptomycin
 - Amikacin/Kanamycin
 - Capreomycin
 - Bedaquiline
 - Delamanid
 - Pretomanid

Treatment of Culture-Positive Drug Susceptible Pulmonary TB

General conclusions from the literature:

- Without PZA minimum duration is 9 months
- Without rifampin see Dr. Seaworth's talk but, basically, treat like MDR
 - Streptomycin and ethambutol (EMB) are approximately equivalent in effect (BUT concern about increasing Streptomycin resistance among foreign born leads to preference of EMB for initial therapy)

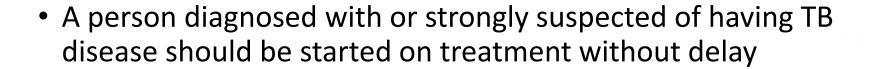

ATS recommendations for treatment of tuberculosis

Table 2. Drug Regimens for Microbiologically Confirmed Pulmonary Tuberculosis Caused by Drug-Susceptible Organisms

Intensive Phase		Intensive Phase	sive Phase Continuation Phase				
Regimen	Drug ^a	Interval and Dose ^b (Minimum Duration)	Drugs	Interval and Dose ^{b,} ° (Minimum Duration)	Range of Total Doses	Comments ^{c,d}	Regimen Effectiveness
1	INH RIF PZA EMB	7 d/wk for 56 doses (8 wk), or 5 d/wk for 40 doses (8 wk)	INH RIF	7 d/wk for 126 doses (18 wk), or 5 d/wk for 90 doses (18 wk)	182–130	This is the preferred regimen for patients with newly diagnosed pulmonary tuberculosis.	Greater
2	INH RIF PZA EMB	7 d/wk for 56 doses (8 wk), or 5 d/wk for 40 doses (8 wk)	INH RIF	3 times weekly for 54 doses (18 wk)	110–94	Preferred alternative regimen in situations in which more frequent DOT during continuation phase is difficult to achieve.	
3	INH RIF PZA EMB	3 times weekly for 24 doses (8 wk)	INH RIF	3 times weekly for 54 doses (18 wk)	78	Use regimen with caution in patients with HIV and/or cavitary disease. Missed doses can lead to treatment failure, relapse, and acquired drug resistance.	*
4	INH RIF PZA EMB	7 d/wk for 14 doses then twice weekly for 12 doses ^e	INH RIF	Twice weekly for 36 doses (18 wk)	62	Do not use twice-weekly regimens in HIV-infected patients or patients with smear-positive and/or cavitary disease. If doses are missed, then therapy is equivalent to once weekly, which is inferior.	*
							Lesser

Treatment for TB disease in Pregnancy

- Treatment regimen
 - PZA or no PZA?
 - Rifampin, INH, EMB for 9 months if PZA is excluded

Yes! You can X-ray a pregnant patient!

ACOG COMMITTEE OPINION

Number 723 • October 2017

(Replaces Committee Opinion Number 656, February 2016)

Committee on Obstetric Practice

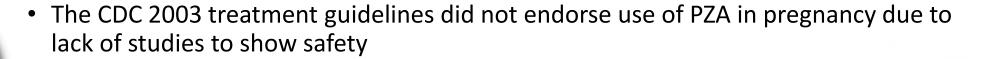
This document is endorsed by the American College of Radiology and the American Institute of Ultrasound in Medicine. This Committee Opinion was developed by the American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Member contributors included Joshua Copel, MD; Yasser El-Sayed, MD; R. Phillips Heine, MD; and Kurt R. Wharton, MD. This document reflects emerging clinical and scientific advances as of the date issued and is subject to change. The information should not be construed as dictating an exclusive course of treatment or procedure to be followed.

Table 2. Effects of Gestational Age and Radiation Dose on Radiation-Induced Teratogenesis (=

Gestational Period	Effects	Estimated Threshold Dose*	
Before implantation (0–2 weeks after fertilization)	Death of embryo or no consequence (all or none)	50–100 mGy	
Organogenesis (2–8 weeks after fertilization)	Congenital anomalies (skeleton, eyes, genitals)	200 mGy	
	Growth restriction	200-250 mGy	
Fetal period	Effects	Estimated Threshold Dose*	
8–15 weeks	Severe intellectual disability (high risk) [†]	60-310 mGy	
	Intellectual deficit	25 IQ-point loss per 1,000 mGy	
	Migragaphaly	200 mGv	
	Microcephaly	200 1110	

exposed to radiation for medical reasons (eg, radiation therapy for carcinoma of the uterus).

Modified from Patel SJ, Reede DL, Katz DS, Subramaniam R, Amorosa JK, Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics 2007;27:1705-22.


Table 3. Fetal Radiation Doses Associated With Common Radiologic Examinations \Leftarrow

Type of Examination	Fetal Dose* (mGy)
Very low-dose examinations (<0.1 mGy)	
Cervical spine radiography (anteroposterior and lateral views)	<0.001
Head or neck CT	0.001-0.01
Radiography of any extremity	<0.001
Mammography (two views)	0.001-0.01
Chest radiography (two views)	0.0005-0.01
Low- to moderate-dose examinations (0.1–10 mGy)	
Radiography	
Abdominal radiography	0.1-3.0
Lumbar spine radiography	1.0-10
Intravenous pyelography	5–10
Double-contrast barium enema	1.0-20
СТ	
Chest CT or CT pulmonary angiography	0.01-0.66
Limited CT pelvimetry (single axial section through the femoral heads)	<1
Nuclear medicine	
Low-dose perfusion scintigraphy	0.1-0.5
Technetium-99m bone scintigraphy	4–5
Pulmonary digital subtraction angiography	0.5
Higher-dose examinations (10–50 mGy)	
Abdominal CT	1.3–35
Pelvic CT	10-50
¹⁸ F PET/CT whole-body scintigraphy	10-50

[†]Because this is a period of rapid neuronal development and migration.

PZA in Pregnancy

The WHO and IUATLD endorse use of PZA in the treatment of TB in pregnancy

- Current (2016) CDC/IDSA/ATS treatment guidelines state
 - Clinicians should evaluate risk/benefit of prescribing PZA, discuss with patient, informing patient that benefits may outweigh risk
 - Patients with HIV, extrapulmonary or severe disease should receive PZA in their treatment regimen

Suspected Active TB at Delivery

Protect the delivery team

 Try to find a negative pressure room for delivery or perhaps a room further away from the general floor, like a surgical suite

Delivery team should wear N95 masks

 Make arrangements to send placenta for pathologic evaluation and AFB culture

After-Delivery Concerns

- Should you separate the patient from their infant?
 - Only if the patient is suspected of having MDR TB
 - If patient is infectious, put the baby on INH or rifampin and have the patient wear a surgical mask while holding the baby until they are no longer infectious

- Can the patient breastfeed?
 - Yes
 - First line TB drugs all into the breastmilk in low but safe levels

Drug Penetration of CSF

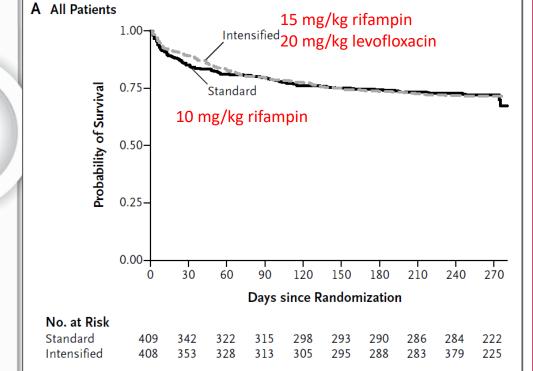
Table 2. Anti-tuberculosis drugs used in TBM treatment [31-34,164].

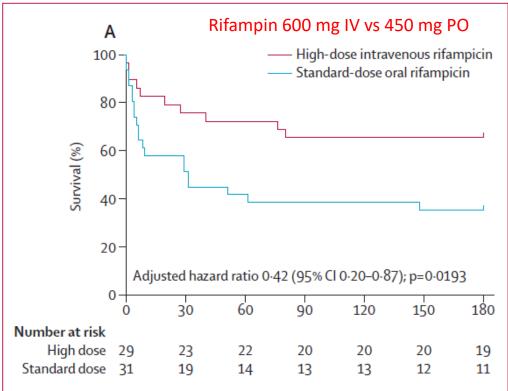
Drug	Forms	Oral bio- availability (%)	Food effect	Plasma protein binding (%)	CNS penetration (%)
First-line Rifampicin	PO; IV	70	-30%	89	10–20
Isoniazid	PO; IV; IM	~100	–50% C _{max}	0–10	80-90
Pyrazinamide	PO	>90	None	~10	90–100
Ethambutol	РО	75–80	None	20-30	20-30
Rifabutin	РО	50	Decreased rate of absorption	85	50
Rifapentine	PO	70	None	98	_

Drug Penetration of CSF

Table 2. Anti-tuberculosis drugs used in TBM treatment [31-34,164].

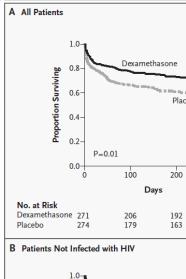
Drug	Forms	Oral bio- availability (%)	Food effect	Plasma protein binding (%)	CNS penetration (%)
First-line Rifampicin	PO; IV	70	-30%	89	10-20
Isoniazid	PO; IV; IM	~100	–50% C _{max}	0–10	80-90
Pyrazinamide	РО	>90	None	~10	90–100
Ethambutol	РО	75–80	None	20-30	20–30
Rifabutin	РО	50	Decreased rate of absorption	85	50
Rifapentine	PO	70	None	98	-


Drug Penetration of CSF


	Table 2. (Cont	inued).					Table 2	. (Continued)					
	Drug	Forms	Oral bio- availability (%)	Food effect	Plasma protein binding (%)	CNS penetratior (%)	D rug	Forms	avail	bio- ability	Food effect	Plasma protein binding (%)	CNS penetration (%)
	Levofloxacin	PO; IV	~100	None	24–38	70–80	-		(,,	,		(1-)	(14)
								Linezolid	PO; IV	~100	–23% with high-fat meals	31	70
1	Moxifloxacin	PO; IV	90	None	50	70-80		Bedaquiline	PO	Unknown	Increase	>99	Likely poor (limited
	Ethionamide	РО	~100	None	~30	80-90							data)
	Cycloserine	PO	65–90	Slight	~0	80-90		Delamanid	РО	25-47	Increase	>99	No human data
				decrease				Pretomanid	РО	Unknown	Increase	93	No human data

Intensified Regimen for TBM (Adults)

ORIGINAL ARTICLE

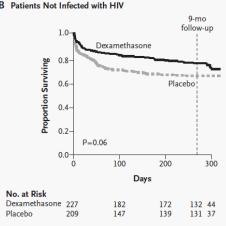

Dexamethasone for the Treatment of Tuberculous Meningitis in Adolescents and Adults

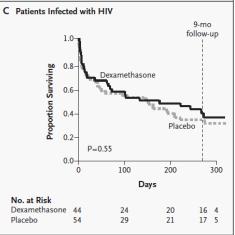
Guy E. Thwaites, M.R.C.P., Nguyen Duc Bang, M.D., Nguyen Huy Dung, M.D., Hoang Thi Quy, M.D., Do Thi Tuong Oanh, M.D., Nguyen Thi Cam Thoa, M.D., Nguyen Quang Hien, M.D., Nguyen Tri Thuc, M.D., Nguyen Ngoc Hai, M.D., Nguyen Thi Ngoc Lan, Ph.D., Nguyen Ngoc Lan, M.D., Nguyen Hong Duc, M.D., Vu Ngoc Tuan, M.D., Cao Huu Hiep, M.D., Tran Thi Hong Chau, M.D., Pham Phuong Mai, M.D., Nguyen Thi Dung, M.D., Kasia Stepniewska, Ph.D., Nicholas J. White, F.R.C.P., Tran Tinh Hien, M.D., and Jeremy J. Farrar, F.R.C.P.

N ENGL J MED 351;17 WWW.NEJM.ORG OCTOBER 21, 2004

Table 3. Outcomes of 545 Patients Nine Months after Randomization.									
Group	No. of Patients								
		Good	Inter- mediate	Severe Disability	Death				
			number	(percent)					
Dexamethasone*	274	104 (38.0)	49 (17.9)	34 (12.4)	87 (31.8)				
Placebo	271	95 (35.1)	42 (15.5)	22 (8.1)	112 (41.3)				

^{*} Because of rounding, the percentages for the dexamethasone group do not total 100.




9-mo follow-up

300

165 44 146 37

Placebo

TB Drugs Cleared by the Kidneys

- Pyrazinamide (PZA)
- Levofloxacin
- Cycloserine
- Anything that is injected
 - Streptomycin
 - Amikacin
 - Capreomycin
 - Kanamycin

Treatment Regimen: Active TB with renal insufficiency

Renal insufficiency counted at CrCl <30

- Initial Phase (first two months):
 - INH 300mg po daily
 - Rifampin 600mg po daily
 - Ethambutol 15-25mg/kg po thrice weekly
 - PZA 25-35mg/kg po *thrice weekly*
 - Vitamin B6 50mg daily
- Continuation
 - INH and Rifampin x 4 7 months

Hepatotoxicity – What to do about it

- First, can you stop medications safely?
 - Is the patient really sick (ICU, septic sick)?
 - Does he have a form of TB you really don't want going untreated (disseminated disease, meningitis, associated with HIV or poorly controlled diabetes)?
- If the patient is ill, pick something liver-sparing and continue treatment.
- If the patient is stable, stop the medications until the liver cools off and do a drug challenge.

Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active TB (Yee, AJRCCM 2003; 167: 1472)

• PZA: 1.48/100 person months of exposure

• INH: 0.49/100 person months

• Rif: 0.43/100 person months

• EMB: 0.07/100 person months

"The drug most likely responsible for the occurrence of hepatitis or rash during therapy for active TB is PZA"

So, what is 'liver-friendly/sparing'?

What if they are really, really sick.....?

- INH
- Rifampin
- Rifabutin
- Ethambutol (EMB)
- Pyrazinamide (PZA)
- Moxifloxacin

- Levofloxacin
- Amikacin

- Liver
- Liver
- Liver/kidney
- Kidney
- Kidney (liver metabolites)
- Liver, but......
- Kidney
- Kidney
- Neither liver or kidney

Liver sparing but not dying

- INH
- Rifampin
- Rifabutin
- Ethambutol (EMB) ←
- Pyrazinamide (PZA)
- Moxifloxacin
- Levofloxacin
- Amikacin
- Linezolid

- Liver
- Liver
- Liver/kidney
- Kidney
- Kidney (liver metabolites)
- Liver, but......
- Kidney
- Kidney
- Neither liver or kidney

Liver-friendly

- INH
- Rifampin
- Rifabutin
- Ethambutol (EMB)
- Pyrazinamide (PZA)
- Moxifloxacin
- Levofloxacin
- Amikacin
- Linezolid

- Liver
- Liver
- Liver/kidney
- Kidney
- Kidney (liver metabolites)
- Liver, but......
- Kidney
- Kidney
- Neither liver or kidney

What is a proper 'drug challenge'?

Stop the medications. Cool the patient off.

 When LFTs have returned to < 2 times the ULN, you are ready to challenge

- Start with rifampin and ethambutol, then INH (or moxifloxacin if there is a shortage....), then strongly consider whether you need PZA
 - Wait 3-7 days between additions
 - Check LFTs before starting the next drug (and wait for the results, please)
 - If LFTs rise stop the last drug added and go to the next

Smear Negative Pulmonary TB

 Sputum has been collected and has resulted smear and culture negative

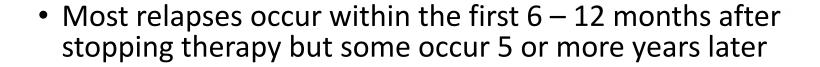
 Treatment recommendations are for RIPE x 2 months, then RI for 2 more months

Consider leaving all 4 drugs or at least INH/rifampin/EMB

M. bovis

- Unpasteurized milk products
 - Travel, gifts from foreign places
- Bladder instillation with BCG
 - Fever, sterile pyuria!
- Resistant to PZA, susceptible to INH, rifampin and EMB
 - Note: PZA monoresistance likely *M. bovis* or *M. kansasii*

Management of Treatment Interruptions


- <14 days –complete standard # of doses</p>
- ->14 days restart from the beginning

- ->80% doses by DOT if initial smear negative, may stop
- Repeat culture
 - >3 month interruption restart from beginning
 - <3 month interruption, culture positive, restart
 - <3 month interruption, culture negative, give an additional 4 months

Relapsed Tuberculosis

- Nearly all drug susceptible patients who were treated with a rifamycin and received DOT will relapse with drug susceptible organisms
 - Treat with standard RIPE regimen
- Patients with a history of poor adherence, self administration or self administration should have additional sputum collected and careful selection of a treatment regimen

Medical Factors Associated With Relapse of Tuberculosis

- Cavitary TB
- Extensive disease on CXR; bilateral infiltrates
- Positive 2 month culture
- Associated medical conditions
 - Diabetes
 - HIV
 - Malabsorption of TB drugs
- Tuberculous lymphadenitis
- Underweight at diagnosis and failure to gain
- Drug resistant disease
- Prior treatment for tuberculosis

TB Elderly

 Hepatotoxicity and as well as other medication toxicities are more common

May want to weight the risk/benefit of using PZA

Criteria to Be Considered Noninfectious

Patients no longer considered infectious if:

- 3 consecutive negative sputum smears
 - collected at least 8 hours apart
 - one early morning specimen

- Adhering to adequate treatment regimen ≥ 2 weeks (one week if smear negative to start)
 - DOT YES!
 - Do you know drug susceptibilities?

Treatment shortening regimen – Drug Sensitive TB

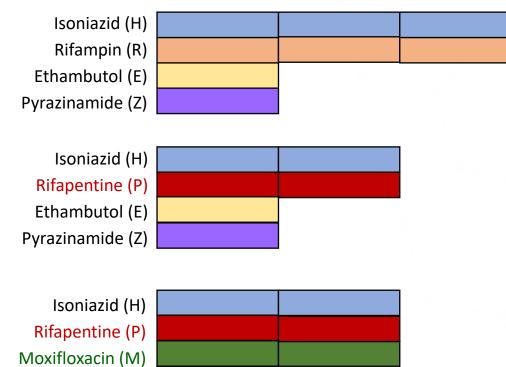
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis

S.E. Dorman, P. Nahid, E.V. Kurbatova, P.P.J. Phillips, K. Bryant, K.E. Dooley, M. Engle, S.V. Goldberg, H.T.T. Phan, J. Hakim, J.L. Johnson, M. Lourens, N.A. Martinson, G. Muzanyi, K. Narunsky, S. Nerette, N.V. Nguyen, T.H. Pham, S. Pierre, A.E. Purfield, W. Samaneka, R.M. Savic, I. Sanne, N.A. Scott, J. Shenje, E. Sizemore, A. Vernon, Z. Waja, M. Weiner, S. Swindells, and R.E. Chaisson, for the AIDS Clinical Trials Group and the Tuberculosis Trials Consortium

2234 participants (194 PLHIV, 1703 with cavity on CXR)
Randomized 1:1:1 to 3 arms
Noninferiority study



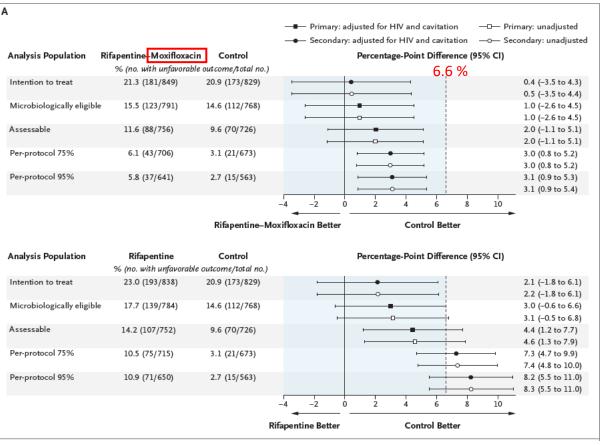
Study 31/A5349

Control (2HRZE/4HR)

RPT (2HPZE/2HP)

Control (2HPZM/4HPM)

Pyrazinamide (Z)


Notes:

- HRZE dosed at standard doses
- Dosed daily, 7 days/week, observed 5 days/week
- Rifapentine 1200 mg (8 tablets)
- Moxifloxacin 400 mg

Study 31 - Results

Challenges associated with shorter treatment regimens

Tolerability (versus safety, efficacy)

Familiarity with the regimen

Drug shortages (first rifapentine, now INH)

Questions?

Lisa.Armitige@dshs.texas.gov

Or

1-800-TEX-LUNG

