Biomarkers and New TB Diagnostics

Andrew DiNardo, MD, PhD March 25, 2025

World TB Day • March 25, 2025 • Webcast

Andrew DiNardo, MD, PhD

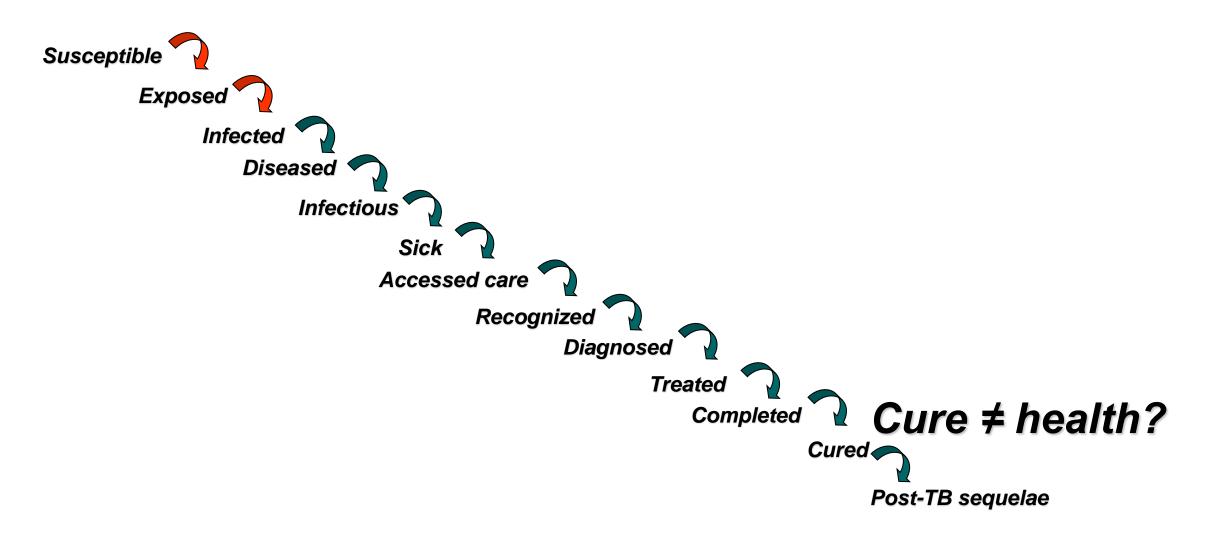
Has the following disclosures to make:

- No conflict of interests
- No relevant financial relationships with any commercial companies pertaining to this activity

Treatment monitoring biomarkers for patient-centered outcomes

Should culture matter so much...?

Andrew DiNardo, MD PhD Baylor College of Medicine Radboud UMC Associate Professor Infectious Diseases dinardo@bcm.edu



Hospital

Radboudumc university medical center

Prevention

Cascade of Care

Standard of Care (?) treatment Monitoring

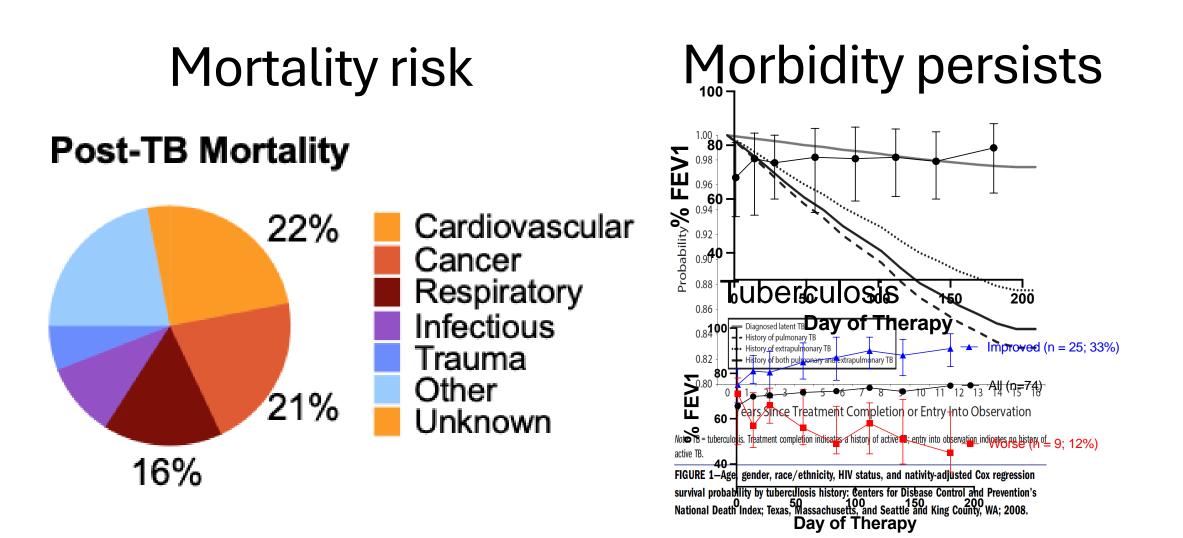
Test	Limitations
Smear	LOD 5000 CFU/mL; nonviable organisms; 1882
Culture	42 day TAT
Symptoms	Paradoxical reactions
Albumin	Non-specific
Hemoglobin	Non-specific
Quantiferon	Non-specific
MBLA	Detects Mtb RNA; Predicts clinical relevant outcomes?

* Molecular Bacterial Load Assay

What should we be Monitoring?

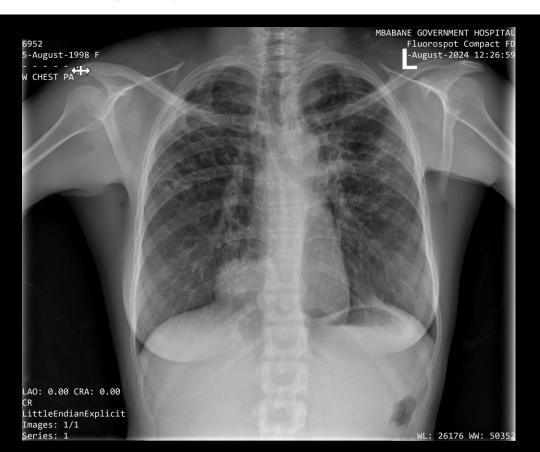
Test	Implementation
Viable bacilli	Necessary but not sufficient for health; MBLA
Deadness	Not currently assessed
Cardiovascular	Not currently assessed
Respiratory	Rollout occurring
Cancer	Not currently assessed
Relapse risk	No good treatment monitoring tools
Well-being	SGRQ; 6 MWT

Viable organisms: 1882 vs 2025


- 1882 option: culture w pDST
 - 6 12 week TAT
 - Costs: \$50 \$500
- 2025 option: MBLA w tNGS
 - qPCR similar to Xpert
 - Detects Mtb RNA; 2-3 hr TAT
 - \$20-50
 - tNGS: gDST in 2 day TAT for <\$100

Molecular Bacterial Load Assay (MBLA)

Killing Viable organisms ≠ synonymous with improved health

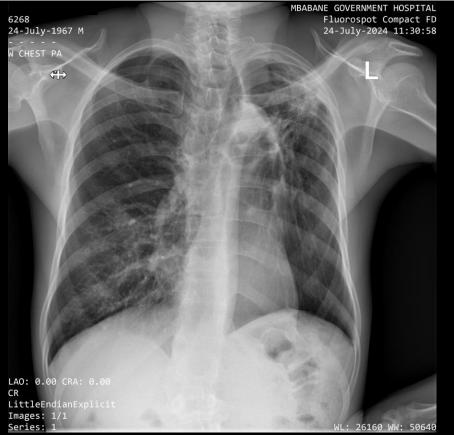

	Test1 2024-01-09 10:28			
Parameter	Best	LLN	Z-sc.	%Pred
FVC[L]	4.76	3.22	1.21	115.8
FEV1[L]	3.59	2.62	0.40	105.6
FEV1/FVC	0.75	0.73	-1.17	
FEF2575[L/s]	3.68	1.90		104.9
PEF[L/s]	6.96			
FET[s]	10.99			
FIVC[L]	4.11	3.22		100.1
PIF[L/s]	5.01			

FEV1 Var = 247mL 6.9%, FVC Var = 774mL 16.3% Test quality FEV1 - D, FVC - E Normal spirometry

Test1 2024-07-16 10:45			
Best	LLN	Z-sc.	%Pred
4.26	3.21	0.30	104.0
3.67	2.61	0.59	108.3
0.86	0.72	0.56	
4.46	1.88		127.6
6.71			
6.64			
4.13	3.21		100.7
5.56			
	Best 4.26 3.67 0.86 4.46 6.71 6.64 4.13	Best LLN 4.26 3.21 3.67 2.61 0.86 0.72 4.46 1.88 6.71 6.64 3.21	Best LLN Z-sc. 4.26 3.21 0.30 3.67 2.61 0.59 0.86 0.72 0.56 4.46 1.88 6.64 4.13

FEV1 Var = 48mL 1.3%, FVC Var = 129mL 3.0% Test quality FEV1 - A, FVC - A Normal spirometry

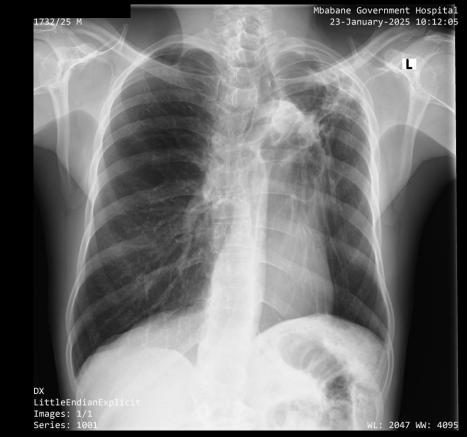
EOT

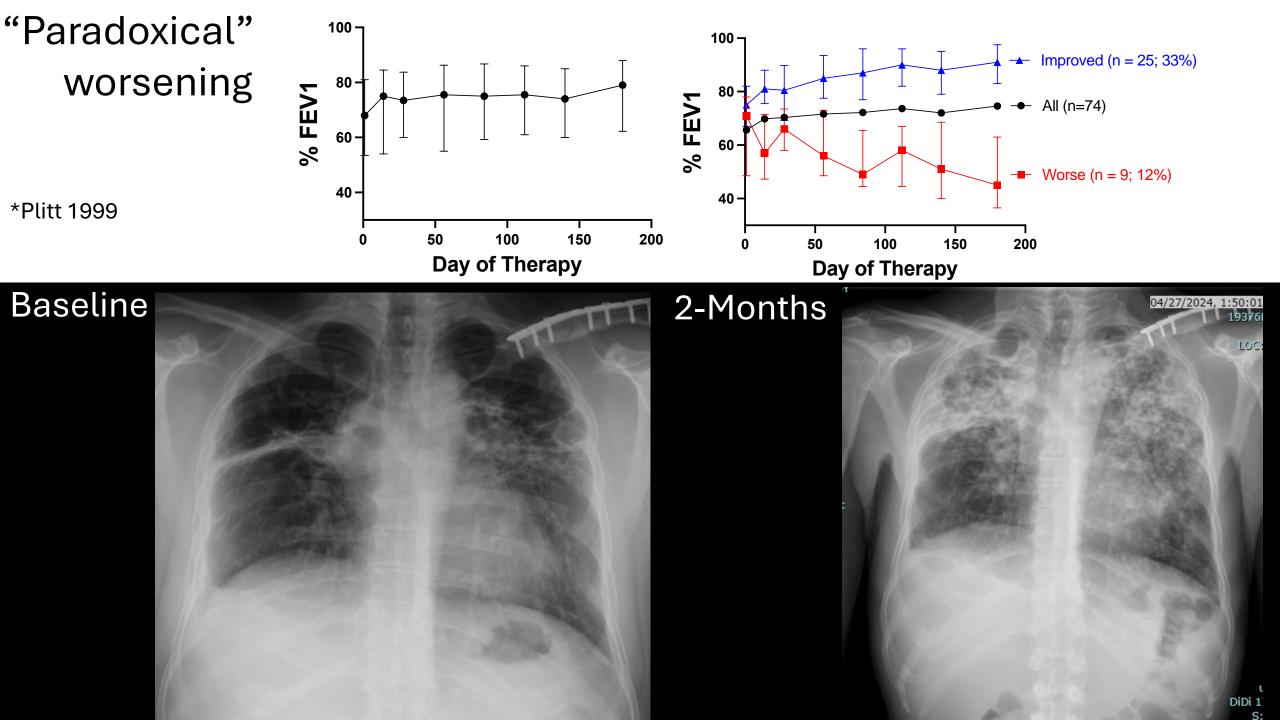

MBABANE GOVERNMENT HOSPITAL Fluorospot Compact FD 29-January-2024 14:31:15 2532 29-January-1998 F (Htts LAO: 0.00 CRA: 0.00 CR LittleEndianExplicit Images: 1/1 Series: 1 WL: 18160 WW: 39968

Baseline

		2011 20		
Parameter	Best	LLN	Z-sc.	%Pred
FVC[L]	4.83	3.00	1.52	122.2
FEV1[L]	₩2.07	2.32	-2.15	66.0
FEV1/FVC	₩0.43	0.69	-5.72	
FEF2575[L/s]	₩0.46	1.12		15.4
PEF[L/s]	₩4.31	4.88		57.0
FET[s]	16.31			
FIVC[L]	3.84	3.00		97.2
PIF[L/s]	3.91			

FEV1 Var = 34mL 1.6%, FVC Var = 503mL 10.4% Test quality FEV1 - A, FVC - E


Baseline Moderate obstruction



Parameter	Best	LLN	Z-sc.	%Pred
FVC[L]	5.31	2.92	3.38	143.4
FEV1[L]	2.32	2.24	-1.48	78.1
FEV1/FVC	₩0.44	0.67	-5.09	
FEF2575[L/s]	₩0.26	1.90		8.0
PEF[L/s]	₩5.27	6.01		70.4
FET[s]	16.22			
FIVC[L]	4.10	2.92		110.7
PIF[L/s]	3.64			

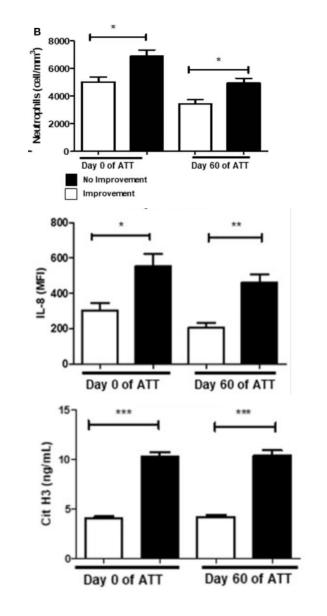
FEV1 Var = 81mL 3.5%, FVC Var = 821mL 15.5% Test quality FEV1 - A, FVC - E Moderate obstruction

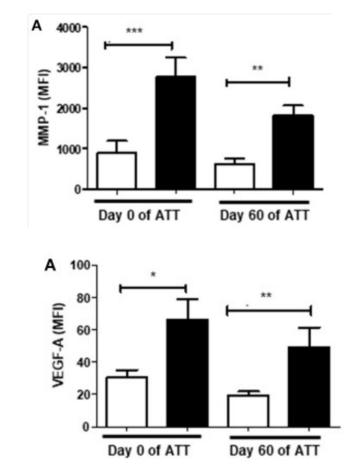
No improvement

Treatment Monitoring for Lung Damage?

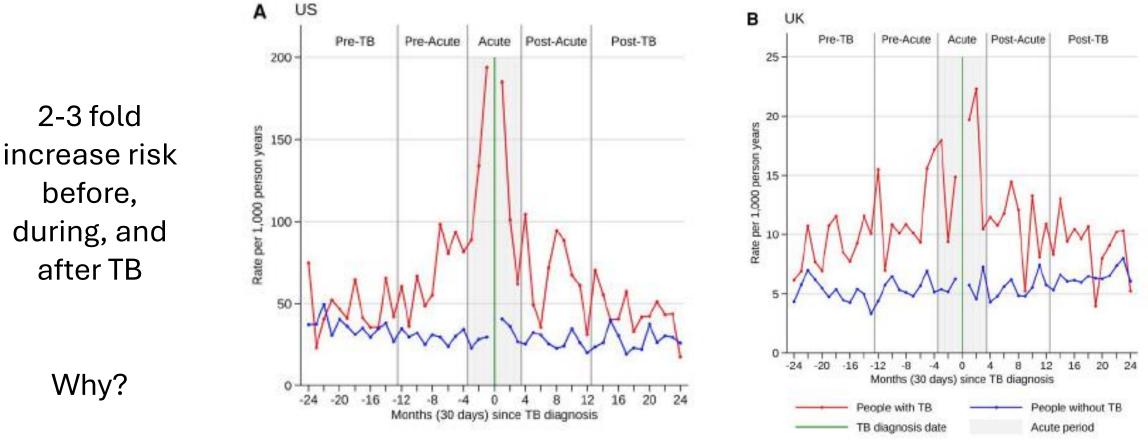
Molecular Pathology

- NETosis
- Fibrosis


Histopathology

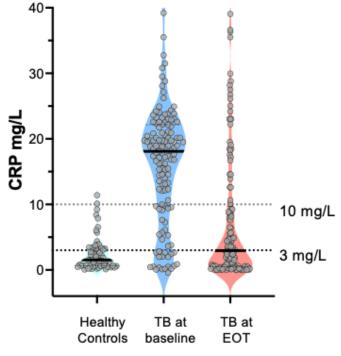

- Fibrosis
- Cavitation
- Bronchiectasis

De Melo 2019;

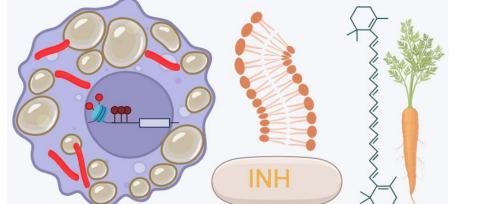

Spirometry

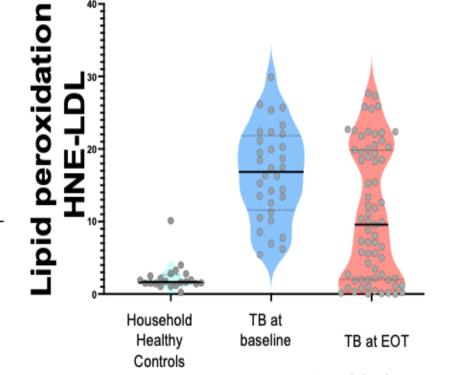
- Obstructive
- Restrictive

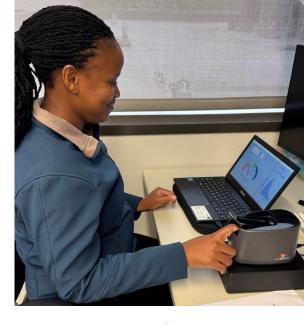
Post-TB assoc Cardiovascular Disease

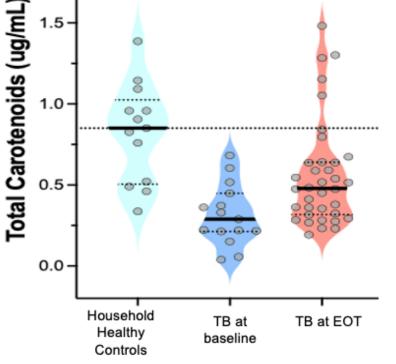


Biology?


Evidence for Biomarkers for TB assoc. Cardiovascular Disease?




Measure levels of inflammatory marker: C-reactive protein (CRP)



Eswatini cohort

Post-TB assoc. Cancer

Lung	Ca:	SIR	3.2
------	-----	-----	-----

Author (year)

SIR

1.42

0.85

5

Time Post-TB	Pooled SIR (95% CI)
<1 yr	16.2 (8.6-30.7)
1-5 Yrs	3.0 (2.1 – 4.2)
> 5 Yrs	1.7 (1.3-2.3)
Overall	1.6 (1.3-1.9)

Kuo et al. (2013) 4.09 Simonsen et al. (2014) 3.40 3.83 Everatt et al. (2016) Chen et al. (2021) 1.44 An et al. (2020) 4.10 Random effects model 3.20 Heterogeneity: $I^2 = 90\%$, p < 0.010.5 2 5 0.2 **Cancer Subtype Pooled SIR** Bladder 1.94 Cervical 2.54 Colon and rectum 1.06 2.85 Esophageal Gastrointestinal 1.52 Genitourinary 1.39 Hematologic 2.16 Hodgkin Lymphoma 2.43 Liver 1.64 Non-Hodgkin Lymphoma 2.31 Ovarian 1.55 Pancreatic 1.58 Prostate 0.99

Stomach

Uterine

0.5

FT

2

Luczynski, Romanowski, Johnson, 2022

Evidence for Biomarkers for TB assoc. Cancer?

Potential mechanisms for post-TB Cancer

- Epigenetic changes
- Clonal hematopoiesis
- Infection induced anergy
- Oncoprotein upregulation
- Chronic inflammation

Reference	Mechanisms of Carcinogenesis	Cancer Sites	Infectious Agents
(17,19)	Chronic Direct and carcinogens inflammation	Hepatocellular carcinoma	HBV
(26)	Chronic inflammation	Hepatocellular carcinoma	HCV
(34,36)	Direct carcinogens	Burkitt's lymphoma, Nasopharyngeal carcinoma and Hodgkin lymphoma	EBV
(43)	Direct carcinogens	Carcinoma of cervix, vulva anus, oral cavity	HPV
(49)	Immune suppression	Kaposi sarcoma, non-Hodgkin lymphoma, carcinoma of the cervix	HIV
(52,56)	Chronic inflammation	Adenocarcinoma and lymphoma	H.pylori
(58)	Chronic inflammation	Colorectal cancer	S. bovis

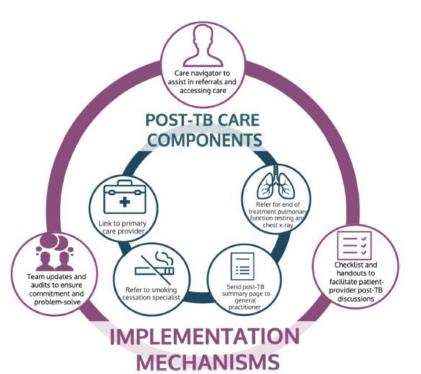

Morbidity	Hazard (HR) or Incidence Rate ratio (IRR)	Putative biomarkers
Lung Dys- function	34-74% of TB survivors have abnormal spirometry ^{1, 2} By PET-CT, >80% of microbial cured TB survivors have persistent lung inflammation ^{4, 5} .	IL-6, ⁶ TNF, CRP, ⁷ CXR ⁸ , TGF-β ⁹ , MMP-1, ^{10, 11} IL- 1β ¹¹ , VEGF, ¹² IL-8, cit-H3, ¹³
Cardio- vascular disease	Compared to those without TB, people with TB have an IRR of 2.7-3.5 ¹⁴ Survivors of TB have a HR of 2.0 above controls without TB ¹⁵	No existing studies have evaluated CVD-specific biomarkers associated with TB.
Cancer	Within first year of TB, SIR 4.7 (95% CI 1.8-12.2) for all cancers and 16.2 (CI 8.6-30.7) for lung cancer ¹⁶	No existing studies have evaluated cancer specific biomarkers associated with TB
TB relapse	Relapse rate of 2.26 per 100 person years of follow up. ¹⁷	IL6, ¹⁸ CXCL10, ¹⁹ IL-1β, ¹⁹

Table 1: Post-TB morbidity and mortality etiologies.

How does Texas help close the gap in treatment monitoring?

- Continue follow up for10 years
- Universal roll-out of lung function evaluation as SOC
- TX-specific post-TB care package

RESEARCH

Using a theory-informed approach to guide the initial development of a post-tuberculosis care package in British Columbia, Canada

Kamila Romanowski^{1,2*}, Victoria Jane Cook^{1,2}, Mark Gilbert^{3,4} and James Cameron Johnston^{1,2}

Open Access

<u>Methodist</u> Edward Graviss Ngan Ha

<u>Eswatini</u>

Gugu Maphalala Ntombi Ginindza Sindi Dlamini Precious Dlamini Welile Sikhondze Nondumiso Dube

EMIE Lab

Tomoki Nishiguchi Santiago Carrero Longlax Alexandra Portillo Daanish Sheikh Malik Ladki

<u>Aurum</u> Bob Wallis Mandla Mlotshwa

Global Tuberculosis Program

Anna Mandalakas Alexander Kay Debrah Vambe Clement Gascua Durbbin Mulengwa Nondumiso Dube Nontobeko Maphalala Tara Ness

<u>TxBioMed</u>

Larry Schlessinger Abud Azad

Funding:

Texas Children's Hospital Burroughs Wellcome/ ASTHM Thrasher Research Fund NIH K23/R01

RadboudUMC

Mihai Netea

DZIF Borstel

Christoph Lange

Jan Heyckendorf

Maja Reimann

Jeffrey D. Cirillo

TAMU

Reinout van Crevel

<u>Rice</u> Isaac Hilton Mike Diehl

B.I Superheros Cristian Coarfa Tanmay Gandhi Sandy L. Grimm Amrit Koirala

Thank you...

G